Effects of local anesthetics on phospholipid topology and dopamine uptake and release in rat brain synaptosomes. 1982

P G Bradford, and G V Marinetti

The effects of local anesthetics on the topology of aminophospholipids and on the release and uptake of dopamine in rat brain synaptosomes have been examined. A metabolically intact preparation of synaptosomes was prepared which maintains amino-phospholipid asymmetry and the capacity for sodium-driven uptake and depolarization-dependent release of dopamine. Incubation of synaptosomes with local anesthetics at 37 degrees C induced perturbations in the topology of aminophospholipids as determined by their reactivities to the covalent probe trinitrobenzenesulfonic acid. The reaction of trinitrobenzenesulfonate with phosphatidylethanolamine and phosphatidylserine was inhibited 10-20% by low concentrations of tetracaine (1-100 muM) and enhanced by high concentrations (0.3-1.0 mM). Other local anesthetics showed a similar biphasic effect with a potency order of dibucaine greater than tetracaine greater than lidocaine greater than or equal to procaine. K+-stimulated, Ca2+-dependent release of [3H]dopamine was inhibited significantly at low concentrations of tetracaine (1-10 muM) but enhanced at higher concentrations (0.1-1.0 mM). Dibucaine and procaine had a similar biphasic effect on the dopamine release. For each of the local anesthetics tested, the inhibition of the reaction of phosphatidylethanolamine and phosphatidylserine with trinitrobenzenesulfonate occurred at concentrations which were shown also to inhibit the release of [3H]dopamine. Local anesthetics were shown to inhibit uptake of [3H )dopamine with a potency order which reflects their potency in producing anesthesia. The inhibition of dopamine uptake by dibucaine, tetracaine, lidocaine, or procaine was characterized by inhibitory constants (KI) of 1.8 +/- 0.4 muM, 27 +/- 5 muM, 190 muM and 0.5 mM, respectively.

UI MeSH Term Description Entries
D008297 Male Males
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013574 Synaptosomes Pinched-off nerve endings and their contents of vesicles and cytoplasm together with the attached subsynaptic area of the membrane of the post-synaptic cell. They are largely artificial structures produced by fractionation after selective centrifugation of nervous tissue homogenates. Synaptosome
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P G Bradford, and G V Marinetti
September 1986, Bulletin of environmental contamination and toxicology,
P G Bradford, and G V Marinetti
January 1980, Advances in experimental medicine and biology,
P G Bradford, and G V Marinetti
January 1978, Advances in biochemical psychopharmacology,
P G Bradford, and G V Marinetti
August 1991, Ecotoxicology and environmental safety,
P G Bradford, and G V Marinetti
September 2013, Synapse (New York, N.Y.),
P G Bradford, and G V Marinetti
June 1978, British journal of pharmacology,
P G Bradford, and G V Marinetti
April 1993, Anesthesiology,
P G Bradford, and G V Marinetti
June 1986, Life sciences,
P G Bradford, and G V Marinetti
June 1989, Toxicology and applied pharmacology,
P G Bradford, and G V Marinetti
July 1976, Brain research,
Copied contents to your clipboard!