Genetic evidence for vaccinia virus-encoded DNA polymerase: isolation of phosphonoacetate-resistant enzyme from the cytoplasm of cells infected with mutant virus. 1982

B Moss, and N Cooper

Phosphonoacetate (PAA), at concentrations of 200 micrograms/ml or more, prevented growth of vaccinia virus in HeLa and BSC-1 cells. Spontaneous vaccinia virus mutants, selected at high PAA levels, were resistant to the antiviral effects of the drug. The action of PAA was directed toward an early viral function, since the drug was inhibitory only during the first 4 h of the approximately 15-h growth cycle. Conversely, significant reversal of the antiviral effects was obtained only when the drug was removed at or before the fourth hour of infection. Incorporation of [3H]thymidine into cytoplasmic viral DNA was severely inhibited in cells infected with wild-type virus but not in cells infected with mutant virus. Virus-induced DNA polymerase isolated from the cytoplasm of cells infected with wild-type or mutant virus had indistinguishable chromatographic properties on DEAE-cellulose and phosphocellulose columns. However, the wild-type enzyme was inhibited by relatively low concentrations of PAA, whereas 10-fold higher concentrations were needed for equivalent inhibition of the mutant enzyme. Kinetic analysis indicated that PAA inhibition was noncompetitive with deoxyribonucleoside triphosphates; Ki values for wild-type and mutant DNA polymerases were approximately 25 and 300 microM, respectively. Inhibition of wild-type DNA polymerase was immediate and complete even when PAA was added after initiation of DNA synthesis in vitro, suggesting that chain elongation was affected. These results established that the DNA polymerase is a target of the antiviral action of PAA and provided genetic evidence that this enzyme is virus encoded.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010746 Phosphonoacetic Acid A simple organophosphorus compound that inhibits DNA polymerase, especially in viruses and is used as an antiviral agent. Phosphonoacetate,Disodium Phosphonoacetate,Fosfonet Sodium,Phosphonacetic Acid,Phosphonoacetate, Disodium
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

B Moss, and N Cooper
January 1978, Journal of virology,
B Moss, and N Cooper
March 1983, Proceedings of the National Academy of Sciences of the United States of America,
B Moss, and N Cooper
March 1964, Journal of molecular biology,
B Moss, and N Cooper
October 1998, Journal of virology,
B Moss, and N Cooper
February 1989, Journal of virology,
Copied contents to your clipboard!