Identification of metallothionein in parenchymal and non-parenchymal liver cells of the adult rat. 1982

C V Sciortino, and M L Failla, and D B Bullis

Parenchymal and non-parenchymal cells were isolated from the livers of control, starved, Zn2+-injected and Cd2+-injected rats. Parenchymal cells were prepared by differential centrifugation after perfusion of the liver with collagenase. Non-parenchymal cells were separated from parenchymal cells by unit-gravity sedimentation and differential centrifugation. Yields of 2 x 10(8) non-parenchymal cells with greater than 95% viability and less than 0.2% contamination with parenchymal cells were obtained without exposing cells to Pronase. Metallothioneins-I and -II were identified in parenchymal cells and non-parenchymal cells from Zn2+-treated rats. The metallothionein contents of parenchymal cells, non-parenchymal cells and intact liver were quantified by a competitive 203Hg-binding assay. Administration of heavy-metal salts significantly increased the metallothionein content of both cell populations, although the concentration of the protein was approx. 2.5-fold greater in parenchymal cells than in non-parenchymal cells. Overnight starvation increased the metallothionein content of parenchymal cells without altering that of non-parenchymal cells. The potential significance of this differential response by different liver cell types with regard to the influence of Zn2+ on stress-mediated alterations in hepatic metabolism is discussed.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008667 Metalloproteins Proteins that have one or more tightly bound metal ions forming part of their structure. (Dorland, 28th ed) Metalloprotein
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013217 Starvation Lengthy and continuous deprivation of food. (Stedman, 25th ed)

Related Publications

C V Sciortino, and M L Failla, and D B Bullis
March 1983, The Biochemical journal,
C V Sciortino, and M L Failla, and D B Bullis
November 1978, Biochemical and biophysical research communications,
C V Sciortino, and M L Failla, and D B Bullis
March 1980, Experimental cell research,
C V Sciortino, and M L Failla, and D B Bullis
September 1998, Journal of gastroenterology and hepatology,
C V Sciortino, and M L Failla, and D B Bullis
September 1998, Journal of gastroenterology and hepatology,
C V Sciortino, and M L Failla, and D B Bullis
March 1982, Biochemical and biophysical research communications,
C V Sciortino, and M L Failla, and D B Bullis
February 1977, European journal of biochemistry,
C V Sciortino, and M L Failla, and D B Bullis
December 1979, Biochemical pharmacology,
C V Sciortino, and M L Failla, and D B Bullis
October 1980, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
C V Sciortino, and M L Failla, and D B Bullis
March 1978, Experimental cell research,
Copied contents to your clipboard!