Electron microscopical observations on the indoleamine-accumulating neurons and their synaptic connections in the retina of the cat. 1982

I Holmgren-Taylor

The distribution of indoleamine-accumulating amacrine cells and their synaptic connections in the retina of the cat were analyzed in the fluorescence, phase-contrast, and electron microscopes. The findings were compared to recently characterized morphological subclasses of amacrine cells. The indoleamine-accumulating neurons were visualized after labeling with an exogenous indoleamine, 5,6-dihydroxytryptamine. The intravitreal injection of the labeling drug was preceded by treatment with the neurotoxic dopamine-analogue, 6-hydroxydopamine, in order to destroy the otherwise interfering dopaminergic processes. The analysis in the fluorescence and phase-contrast microscopes confirmed earlier reports that the indoleamine-accumulating cell bodies and processes have a redistribution consistent with that of amacrine cells. A stratified branching pattern of the indoleamine-accumulating processes in the outer half of the inner plexiform layer was discovered. In the inner half of that layer the branching pattern is diffuse. In the electron microscope the indoleamine-accumulating neurons were seen to have synapses fo the conventional type. Their main synaptic contacts are reciprocal synapses with rod bipolar terminals in sublamina b of the inner plexiform layer. They also have synapses with flat cone bipolar terminals in sublamina a, and occasionally with amacrine cells and ganglion cells throughout the inner plexiform layer. Synapses with invaginating cone bipolar terminals, in sublamina b, appear to be rare. The synaptic arrangement with reciprocal synapses with rod bipolar terminals is similar to that of the recently reported AI amacrine cells. It is also similar to that of the indoleamine-accumulating neurons in the retinae of other mammals investigated earlier.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D015115 5,6-Dihydroxytryptamine Tryptamine substituted with two hydroxyl groups in positions 5 and 6. It is a neurotoxic serotonin analog that destroys serotonergic neurons preferentially and is used in neuropharmacologic research. 3-(2-Aminoethyl)indole-5,6-diol,5,6 Dihydroxytryptamine

Related Publications

I Holmgren-Taylor
November 1976, Cell and tissue research,
I Holmgren-Taylor
May 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Holmgren-Taylor
May 1989, The Journal of comparative neurology,
I Holmgren-Taylor
November 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
I Holmgren-Taylor
January 1981, Experimental eye research,
I Holmgren-Taylor
January 1979, Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie. Albrecht von Graefe's archive for clinical and experimental ophthalmology,
I Holmgren-Taylor
January 1987, Journal fur Hirnforschung,
I Holmgren-Taylor
September 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!