Anatomical binding of intrinsic connections in striate cortex of tree shrews (Tupaia glis). 1982

K S Rockland, and J S Lund, and A L Humphrey

The intrinsic connectivity of striate cortex was investigated by injecting horseradish peroxidase (HRP) into this area in tree shrews. Such HRP injections demonstrated periodically organized, stripelike connections within area 17. These stripes occur in layers I-IIIA and consist of a small number or retrogradely filled neurons, some clearly pyramidal, together with HRP-labeled axon terminals. HRP-filled axons trunks run between labeled stripes, interconnecting adjacent and distant regions of the stripe pattern. Correlation with Golgi-stained tissue suggests that these stripes are horizontally interconnected by pyramidal neurons with long intracortical axon collaterals (followed for distances over 1 mm from the soma). The HRP-labeled strips measure about 230 micrometers in width, with a center-to-center repeat distance of 450--500 micrometers. They have been mapped over an 8 mm2 area of striate cortex and would thus seem capable of effecting lateral interactions over considerable portions of the retinotopic map. In their dimensions and overall pattern, these anatomical stripes resemble the 2-deoxyglucose (2-DG) bands resulting from visual stimulation of trees shrews with stripes of a single orientation. While the functional role of the HRP-labeled stripes is unclear, their similarities with the 2-DG pattern raise the intriguing possibility that they may be related to orientation selectivity. The striking regularity of these extensive lateral interconnections emphasizes the importance of horizontal intralaminar connections within the cortex.

UI MeSH Term Description Entries
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014417 Tupaia A genus of tree shrews of the family TUPAIIDAE which consists of about 12 species. One of the most frequently encountered species is T. glis. Members of this genus inhabit rain forests and secondary growth areas in southeast Asia.
D014418 Tupaiidae The only family of the order SCANDENTIA, variously included in the order Insectivora or in the order Primates, and often in the order Microscelidea, consisting of five genera. They are TUPAIA, Ananthana (Indian tree shrew), Dendrogale (small smooth-tailed tree shrew), Urogale (Mindanao tree shrew), and Ptilocercus (pen-tailed tree shrew). The tree shrews inhabit the forest areas of eastern Asia from India and southwestern China to Borneo and the Philippines. Ptilocercus,Shrews, Tree,Tree Shrews,Tupaiinae,Treeshrews,Shrew, Tree,Tree Shrew,Treeshrew
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas

Related Publications

K S Rockland, and J S Lund, and A L Humphrey
April 1984, Laboratory animal science,
K S Rockland, and J S Lund, and A L Humphrey
August 1972, Laboratory animal science,
K S Rockland, and J S Lund, and A L Humphrey
September 1979, Experimental neurology,
K S Rockland, and J S Lund, and A L Humphrey
January 1965, Folia primatologica; international journal of primatology,
K S Rockland, and J S Lund, and A L Humphrey
April 1983, Journal of morphology,
K S Rockland, and J S Lund, and A L Humphrey
March 1978, Brain research,
K S Rockland, and J S Lund, and A L Humphrey
July 1982, American journal of physical anthropology,
K S Rockland, and J S Lund, and A L Humphrey
February 1966, The Journal of parasitology,
K S Rockland, and J S Lund, and A L Humphrey
January 1979, Brain research bulletin,
K S Rockland, and J S Lund, and A L Humphrey
November 1980, The Journal of comparative neurology,
Copied contents to your clipboard!