Na+-H+ exchange at the apical membrane of Necturus gallbladder. Extracellular and intracellular pH studies. 1982

S A Weinman, and L Reuss

The mechanism of luminal solution acidification was studied in Necturus gallbladder by measurement of mucosal solution and intracellular pH with glass electrodes. When the gallbladder was bathed by a Na-Ringer's solution it acidified the luminal side by a Na+-dependent, amiloride-inhibitable process. In the presence of ouabain, acidification was reduced but could be stimulated to a rate greater than that under control conditions by the imposition of an inwardly directed Na+ gradient. These results suggest that luminal acidification results from Na+-H+ exchange at the apical membrane and not by diffusion of metabolic CO2. Li+ can substitute for Na+ but K+, Rb+, Cs+, and tetramethylammonium (TMA+) cannot. The maximal rate of exchange was about five times greater for Na+ than for Li+. Intracellular pH (pHi) was measured with recessed-tip glass microelectrodes; with the tissue bathed in Na-Ringer's solution (pH 7.75), pHi was 7.51 +/- 0.04. After inhibition of Na+-H+ exchange by mucosal perfusion with amiloride (1 mM) or by complete Na+ replacement with TMA+, phi fell reversibly by 0.15 and 0.22 pH units, respectively. These results support the conclusion that Na+-H+ exchange at the apical membrane is the mechanism of luminal acidification and is involved in the maintenance of steady state pHi.

UI MeSH Term Description Entries
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009337 Necturus A genus of the Proteidae family with five recognized species, which inhabit the Atlantic and Gulf drainages. Mudpuppy,Mudpuppies
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D005704 Gallbladder A storage reservoir for BILE secretion. Gallbladder allows the delivery of bile acids at a high concentration and in a controlled manner, via the CYSTIC DUCT to the DUODENUM, for degradation of dietary lipid. Gallbladders
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000143 Acids Chemical compounds which yield hydrogen ions or protons when dissolved in water, whose hydrogen can be replaced by metals or basic radicals, or which react with bases to form salts and water (neutralization). An extension of the term includes substances dissolved in media other than water. (Grant & Hackh's Chemical Dictionary, 5th ed) Acid
D000584 Amiloride A pyrazine compound inhibiting SODIUM reabsorption through SODIUM CHANNELS in renal EPITHELIAL CELLS. This inhibition creates a negative potential in the luminal membranes of principal cells, located in the distal convoluted tubule and collecting duct. Negative potential reduces secretion of potassium and hydrogen ions. Amiloride is used in conjunction with DIURETICS to spare POTASSIUM loss. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p705) Amidal,Amiduret Trom,Amiloberag,Amiloride Hydrochloride,Amiloride Hydrochloride, Anhydrous,Kaluril,Midamor,Midoride,Modamide,Anhydrous Amiloride Hydrochloride,Hydrochloride, Amiloride,Hydrochloride, Anhydrous Amiloride,Trom, Amiduret
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid

Related Publications

S A Weinman, and L Reuss
March 1985, The Journal of general physiology,
S A Weinman, and L Reuss
June 1984, The Journal of general physiology,
S A Weinman, and L Reuss
September 1982, The American journal of physiology,
S A Weinman, and L Reuss
August 1987, The Journal of general physiology,
S A Weinman, and L Reuss
January 1983, The Journal of membrane biology,
S A Weinman, and L Reuss
September 1984, The Journal of general physiology,
S A Weinman, and L Reuss
January 1985, Pflugers Archiv : European journal of physiology,
S A Weinman, and L Reuss
September 1983, Biophysical journal,
S A Weinman, and L Reuss
August 1990, Biochimica et biophysica acta,
Copied contents to your clipboard!