Quantitative morphological analysis of proliferating and nonproliferating subpopulations of IMR-90 fibroblasts during aging in vitro. 1982

T B Pool, and T O Heitman, and M A Buck

Early-, mid- and late-passage cultures (population doubling levels 12, 35, and 51, respectively) of IMR-90 fibroblasts were exposed to 3H-thymidine for 48 h prior to fixation in situ for morphometric analysis in order to determine quantitatively what ultrastructural changes accompany the loss of proliferative capacity during aging in vitro. Analysis of autoradiographs, both at the light and electron microscopic levels, with an image analyzer followed by ANOVA statistical scrutiny demonstrated that a significant increase in relative cell area, an indicator of cell size, was characteristic of cells unable to incorporate 3H-TdR at both mid- and late-passage, but not at early-passage levels. Nuclear size also increased significantly with progressive passage level but was not related to proliferative capacity. No significant difference in the area fraction of nucleoli per unit area of nucleus or of mitochondria, Golgi, or lysosomes was seen in either subpopulation at any passage level. Dilated cisternae of rough endoplasmic reticulum in early-passage cells were seen if cells were harvested with trypsin and fixed either before or after centrifugation, but were not seen in labeled or unlabeled cells from any passage level when cultures were fixed in situ. We conclude that a significant increase in cell size is the only significant morphological change associated with the loss of proliferative capacity of IRM-90 fibroblasts. Furthermore, our data indicate that there is no accumulation of secondary lysosomes in human diploid fibroblasts during aging in vitro; we therefore cannot support any hypothesis of aging or proliferative decline that is based mechanistically upon this phenomenon.

UI MeSH Term Description Entries
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013936 Thymidine A nucleoside in which THYMINE is linked to DEOXYRIBOSE. 2'-Deoxythymidine,Deoxythymidine,2' Deoxythymidine
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

T B Pool, and T O Heitman, and M A Buck
May 1981, Journal of cellular physiology,
T B Pool, and T O Heitman, and M A Buck
February 1987, Biochemical and biophysical research communications,
T B Pool, and T O Heitman, and M A Buck
November 1985, Journal of cellular physiology,
T B Pool, and T O Heitman, and M A Buck
January 1981, Mechanisms of ageing and development,
T B Pool, and T O Heitman, and M A Buck
March 1982, Archives of biochemistry and biophysics,
T B Pool, and T O Heitman, and M A Buck
May 1979, The Biochemical journal,
T B Pool, and T O Heitman, and M A Buck
June 1980, Mechanisms of ageing and development,
T B Pool, and T O Heitman, and M A Buck
June 2014, Mechanisms of ageing and development,
T B Pool, and T O Heitman, and M A Buck
October 1981, The Journal of cell biology,
Copied contents to your clipboard!