Interaction of rat liver glucocorticoid receptor with sodium tungstate. 1982

N Murakami, and S P Healy, and V K Moudgil

Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011965 Receptors, Glucocorticoid Cytoplasmic proteins that specifically bind glucocorticoids and mediate their cellular effects. The glucocorticoid receptor-glucocorticoid complex acts in the nucleus to induce transcription of DNA. Glucocorticoids were named for their actions on blood glucose concentration, but they have equally important effects on protein and fat metabolism. Cortisol is the most important example. Corticoid Type II Receptor,Glucocorticoid Receptors,Glucocorticoids Receptor,Corticoid II Receptor,Corticoid Type II Receptors,Glucocorticoid Receptor,Receptors, Corticoid II,Receptors, Corticoid Type II,Receptors, Glucocorticoids,Corticoid II Receptors,Glucocorticoids Receptors,Receptor, Corticoid II,Receptor, Glucocorticoid,Receptor, Glucocorticoids
D011987 Receptors, Steroid Proteins found usually in the cytoplasm or nucleus that specifically bind steroid hormones and trigger changes influencing the behavior of cells. The steroid receptor-steroid hormone complex regulates the transcription of specific genes. Corticosteroid Receptors,Receptors, Corticosteroid,Steroid Receptors,Corticosteroid Receptor,Receptors, Steroids,Steroid Receptor,Receptor, Corticosteroid,Receptor, Steroid,Steroids Receptors
D002482 Cellulose A polysaccharide with glucose units linked as in CELLOBIOSE. It is the chief constituent of plant fibers, cotton being the purest natural form of the substance. As a raw material, it forms the basis for many derivatives used in chromatography, ion exchange materials, explosives manufacturing, and pharmaceutical preparations. Alphacel,Avicel,Heweten,Polyanhydroglucuronic Acid,Rayophane,Sulfite Cellulose,alpha-Cellulose,Acid, Polyanhydroglucuronic,alpha Cellulose
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014222 Triamcinolone Acetonide An esterified form of TRIAMCINOLONE. It is an anti-inflammatory glucocorticoid used topically in the treatment of various skin disorders. Intralesional, intramuscular, and intra-articular injections are also administered under certain conditions. Azmacort,Cinonide,Kenacort A,Kenalog,Kenalog 40,Tricort-40,Acetonide, Triamcinolone,Tricort 40,Tricort40
D014414 Tungsten A metallic element with the atomic symbol W, atomic number 74, and atomic weight 183.85. It is used in many manufacturing applications, including increasing the hardness, toughness, and tensile strength of steel; manufacture of filaments for incandescent light bulbs; and in contact points for automotive and electrical apparatus. Wolfram

Related Publications

N Murakami, and S P Healy, and V K Moudgil
November 1976, European journal of biochemistry,
N Murakami, and S P Healy, and V K Moudgil
February 1989, Endocrinology,
N Murakami, and S P Healy, and V K Moudgil
November 1984, Biochemistry,
N Murakami, and S P Healy, and V K Moudgil
September 1981, Biochimica et biophysica acta,
N Murakami, and S P Healy, and V K Moudgil
December 1982, Biochimica et biophysica acta,
N Murakami, and S P Healy, and V K Moudgil
January 1986, Journal of steroid biochemistry,
N Murakami, and S P Healy, and V K Moudgil
January 1988, Journal of steroid biochemistry,
N Murakami, and S P Healy, and V K Moudgil
April 1991, Biochimica et biophysica acta,
N Murakami, and S P Healy, and V K Moudgil
January 1984, Journal of steroid biochemistry,
N Murakami, and S P Healy, and V K Moudgil
January 1994, Voprosy meditsinskoi khimii,
Copied contents to your clipboard!