Transfer of 1,3-diphosphoglycerate between glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase via an enzyme-substrate-enzyme complex. 1982

J P Weber, and S A Bernhard

On the basis of the alternatives of direct inter-enzyme transfer vs. dissociation followed by random diffusion, two kinetic models for metabolite transfer between consecutive enzymes are developed. These two models are readily distinguishable experimentally for the transfer of 1,3-diphosphoglycerate (1,3-P2G) between glyceraldehyde-3-phosphate dehydrogenase (GPDH) and 3-phosphoglycerate kinase (PGK). Since 1,3-P2G is exceedingly tightly bound to PGK, the kinetics of its transfer to GPDH are predictably different for each of these two models. Our experiments unambiguously demonstrate that 1,3-P2G is directly transferred between these two enzymes via an enzyme-substrate-enzyme complex. This direct transfer is described by a Michaelis-Menten scheme in which PGK . 1,3-P2G is the "substrate" for GPDH. At high concentrations of PGK . 1,3-P2G, the transfer reaction becomes nearly PGK . 1,3-P2G concentration independent. The rate of the transfer reaction is activated 3.5-fold by saturating quantities of ATP and 20-fold by saturating quantities of 3-PG. Evidence is presented that the PGK . 1,3-P2G complex is structurally distinct from either PGK itself or other PGK . ligand complexes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D004163 Diphosphoglyceric Acids Glyceric acids where two of the hydroxyl groups have been replaced by phosphates. Bisphosphoglycerates,Acids, Diphosphoglyceric
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D005987 Glyceraldehyde-3-Phosphate Dehydrogenases Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD. GAPD,Glyceraldehyde-3-Phosphate Dehydrogenase,Glyceraldehydephosphate Dehydrogenase,Phosphoglyceraldehyde Dehydrogenase,Triosephosphate Dehydrogenase,Dehydrogenase, Glyceraldehyde-3-Phosphate,Dehydrogenase, Glyceraldehydephosphate,Dehydrogenase, Phosphoglyceraldehyde,Dehydrogenase, Triosephosphate,Dehydrogenases, Glyceraldehyde-3-Phosphate,Glyceraldehyde 3 Phosphate Dehydrogenase
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J P Weber, and S A Bernhard
October 1984, Biochemistry international,
J P Weber, and S A Bernhard
June 1993, Biochimica et biophysica acta,
J P Weber, and S A Bernhard
January 1995, European journal of biochemistry,
J P Weber, and S A Bernhard
April 1999, Indian journal of biochemistry & biophysics,
J P Weber, and S A Bernhard
October 1987, Indian journal of biochemistry & biophysics,
Copied contents to your clipboard!