Molecular mobilities and the lowered osmolality of the chromaffin granule aqueous phase. 1982

R Sen, and R R Sharp

Carbon-13 spin-lattice relaxation times, T1, have been measured in whole adrenal medullary tissue slices, in suspensions of isolated chromaffin granules, in the reconcentrated chromaffin granule lysate, and in various model solutions containing catecholamines. ATP, chromogranins and Ca2+. Reorientational correlation times have been calculated at 10 degrees C using T1 data and nuclear Overhauser enhancements for protonated carbons on both catecholamines and nucleotides. Correlation times in all media are relatively short and characteristic of highly fluid aqueous phases. Adrenalin and ATP exhibit substantial differences in correlation times in all media, however, the ratio tau R (ATP): tau R(catecholamine) ranging from 2.4 in simple 3:1 adrenalin-ATP solutions to 4 in intact chromaffin granules. This difference, as well as the relatively high absolute reorientational mobilities of both components, confirms the importance of labile ionic interactions between ATP and catecholamines, but rules out the presence of high concentrations of base-stacked structures. Participation of the chromogranins in ternary complexes with catecholamines and ATP appears to be of minor importance. Ionic interactions to the protein are not reflected in either 13C T1 values or chemical shifts of arginine or glutamate sidechain resonances, or in the 13C chemical shifts of ATP or catecholamines. Very labile protein-ATP binding appears to be reflected in the correlation time measurements, however, which show selective immobilization of ATP relative to catecholamine in the presence of soluble protein. Osmotic measurements indicate that solutions containing adrenaline, ATP and Ca2+ are highly nonideal, but probably not sufficiently so to account fully for the osmotic stabilization of the chromaffin through their polyelectrolyte properties, exert a significant influence on the intragranular osmolality. The osmotic lowering due to polyion-counterion interactions has been estimated semiquantitatively using a theory developed by Oosawa.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

R Sen, and R R Sharp
March 1977, Biochimica et biophysica acta,
R Sen, and R R Sharp
January 1987, Annals of the New York Academy of Sciences,
R Sen, and R R Sharp
June 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences,
R Sen, and R R Sharp
January 1988, Methods in enzymology,
R Sen, and R R Sharp
November 1974, Proceedings of the Royal Society of London. Series B, Biological sciences,
R Sen, and R R Sharp
February 1982, The Journal of biological chemistry,
R Sen, and R R Sharp
January 1979, International review of cytology,
R Sen, and R R Sharp
July 1982, Biophysical journal,
R Sen, and R R Sharp
November 1982, Journal of neurochemistry,
Copied contents to your clipboard!