Ultrastructure of the perfused rat epididymis: effect of luminal sodium ion concentration. 1982

C H Yeung, and T G Cooper

The appearance of the rat epididymal epithelium changed when it was perfused in vivo through the lumen with unphysiologically high sodium ion concentrations; dilatation of intercellular spaces (ICS) at threshold concentrations of 30 mM-Na+ in the cauda and about 55 mM-Na+ in the corpus was associated with absorption of water from the lumen. Despite the distended ICS, junctional complexes appeared intact, and their integrity was confirmed by the exclusion of luminal horseradish peroxidase (HRP) from the ICS, and by demonstrating that circulating [3H]inulin did not enter the lumen. Smooth ER and lipid droplets in the principal cells of the corpus epididymidis were well maintained, and the preservation of granular ER in principal cells of the cauda epididymidis lent morphological support to the continued secretion of protein in this segment. However, occasional distension or involution of inner Golgi cisternae was evident in principal cells after 3-6 h perfusion. In contrast to multivesicular bodies of principal cells, the apical and basal vacuoles characteristic of clear cells changed in size with different perfusion. In contrast to multivesicular bodies of principal cells, the apical and basal vacuoles characteristic of clear cells changed in size with different perfusing solutions. When low Na+ concentrations were perfused large translucent vacuoles were frequently found in the apical cytoplasm of clear cells in the corpus and cauda epididymidis, and filled vacuoles became larger and showed a decrease in content density in the cauda epididymidis. These large vacuoles were absent from tissue perfused with high Na+ concentrations. Normal pinocytotic activity of both cell types was demonstrated by perfusing HRP which was taken up by the normal route in principal cells, with some transfer to the Golgi cisternae. By far the most HRP was accumulated in clear cell vacuoles irrespective of the composition of the perfusing solution.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001834 Body Water Fluids composed mainly of water found within the body. Water, Body
D004822 Epididymis The convoluted cordlike structure attached to the posterior of the TESTIS. Epididymis consists of the head (caput), the body (corpus), and the tail (cauda). A network of ducts leaving the testis joins into a common epididymal tubule proper which provides the transport, storage, and maturation of SPERMATOZOA.
D000042 Absorption The physical or physiological processes by which substances, tissue, cells, etc. take up or take in other substances or energy.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

C H Yeung, and T G Cooper
December 1973, The Journal of clinical investigation,
C H Yeung, and T G Cooper
October 1981, Pflugers Archiv : European journal of physiology,
C H Yeung, and T G Cooper
August 1989, International journal of andrology,
C H Yeung, and T G Cooper
June 1981, International journal of andrology,
C H Yeung, and T G Cooper
March 1988, Shi yan sheng wu xue bao,
C H Yeung, and T G Cooper
December 1980, The Journal of physiology,
C H Yeung, and T G Cooper
April 1979, Morphologiai es igazsagugyi orvosi szemle,
C H Yeung, and T G Cooper
July 1982, The American journal of physiology,
C H Yeung, and T G Cooper
June 1980, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!