Target regulation of synaptic number in the compressed retinotectal projection of goldfish. 1982

M Murray, and S Sharma, and M A Edwards

In order to determine the morphological consequences of the formation of a compressed retinotectal projection, the optic neuropil lamina (stratum fibrosum et griseum superficialis, SFGS) was examined in large goldfish 3 months to 4 years after ablation of the caudal half of the tectum both with crush of the optic nerve (HTX) without (HT). In semithin sections, the SFGS, as delineated with orthograde HRP labeling, shows a persistent hypertrophy of about 25% in HTX and HT groups. Comparison of ultrastructural stereological data with similar data on control and regenerated projections to intact tecta (Murray and Edwards, '82) indicated that this hypertrophy can be attributed largely to an increased number of axons and not to increases in terminal or dendritic compartments. A normal number of synaptic terminals per column through SFGS is conserved in HTX and HT groups. Planimetric analysis and observations using orthograde HRP labeling reveal no group differences in size and shape of terminal profiles. The same number of retinal ganglion cells project to a half-tectum as to an intact tectum, as indicated by estimates of ganglion cell number and of the minimum percentage of them which project to the tectum using retrograde HRP labeling. The results suggest that the regenerating and sprouting optic axons participating in the formation of a compressed retinotopic projection compete for a limited accommodation inthe SFGS and that this capacity to accept synaptic input becomes saturated at the control innervation density. The results are consistent with the formation of a smaller than normal number of terminals per optic axon, numerical estimates for which are given. If the percentage of terminals which are optic does not change, then the number of terminals per axon is reduced by about 40%.

UI MeSH Term Description Entries
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D013477 Superior Colliculi The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway

Related Publications

M Murray, and S Sharma, and M A Edwards
January 1988, Acta biologica Hungarica,
M Murray, and S Sharma, and M A Edwards
September 1994, The Journal of comparative neurology,
M Murray, and S Sharma, and M A Edwards
March 1989, The Journal of comparative neurology,
M Murray, and S Sharma, and M A Edwards
June 1972, Experimental neurology,
M Murray, and S Sharma, and M A Edwards
April 1980, Brain research,
M Murray, and S Sharma, and M A Edwards
November 1987, Journal of neurobiology,
M Murray, and S Sharma, and M A Edwards
January 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Murray, and S Sharma, and M A Edwards
June 1983, Brain research,
M Murray, and S Sharma, and M A Edwards
January 1981, Neuroscience,
Copied contents to your clipboard!