Localization at high resolution of antibody-induced mobilization of vaccinia virus hemagglutinin and the major histocompatibility antigens on the plasma membrane of infected cells. 1982

S Dales, and M B Oldstone

We examined the consequence of simultaneous or independent binding of monospecific antibody to the hemagglutinin (HA) of vaccinia virus and the A-, B- and -determinants of HLA on HeLa or Raji cells or KkDk determinants of H-2 on L929 cells. The bound antibodies were marked by goat-anti-mouse (GAM) or goat-anti-rabbit (GAR) fluorochrome conjugates suitable for light microscopy and GAM or GAR gold conjugates, used in electron microscopy. Specificity and amount of antibody adsorbed was ascertained by complement-mediated lysis of 51Cr-labeled cells and by fluorescence-activated cell sorter analysis. Regardless of the order of either antibody to major histocompatibility complex (MHC) or antibody to HA addition after warming to 37 degrees C, there was evidence by light microscopy for co-patching and co-capping of the viral and host antigens. Electron microscopic examination revealed that goat-anti-rabbit 20 nM gold conjugate and goat-anti-mouse 5 nM gold conjugate, marking respectively the HA and MHC molecules, became concentrated in patched or caps in which the two antigens frequently overlapped or were closely associated. The contiguous MHC and HA antigens were also engulfed, as evidenced from the of two sizes of gold particles inside endocytic vacuoles. The significance of these observations is discussed in relation to the cytotoxic T lymphocyte-mediated killing virus-infected targets.

UI MeSH Term Description Entries
D007152 Immunologic Capping An energy dependent process following the crosslinking of B CELL ANTIGEN RECEPTORS by multivalent ligands (bivalent anti-antibodies, LECTINS or ANTIGENS), on the B-cell surface. The crosslinked ligand-antigen receptor complexes collect in patches which flow to and aggregate at one pole of the cell to form a large mass - the cap. The caps may then be endocytosed or shed into the environment. Capping, Immunologic,Immunological Capping,Capping, Immunological
D008285 Major Histocompatibility Complex The genetic region which contains the loci of genes which determine the structure of the serologically defined (SD) and lymphocyte-defined (LD) TRANSPLANTATION ANTIGENS, genes which control the structure of the IMMUNE RESPONSE-ASSOCIATED ANTIGENS, HUMAN; the IMMUNE RESPONSE GENES which control the ability of an animal to respond immunologically to antigenic stimuli, and genes which determine the structure and/or level of the first four components of complement. Histocompatibility Complex,Complex, Histocompatibility,Complex, Major Histocompatibility,Complices, Histocompatibility,Complices, Major Histocompatibility,Histocompatibility Complex, Major,Histocompatibility Complices,Histocompatibility Complices, Major,Major Histocompatibility Complices
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006183 H-2 Antigens The major group of transplantation antigens in the mouse. H2 Antigens,Antigens, H-2,Antigens, H2,H 2 Antigens
D006389 Hemagglutinins, Viral Specific hemagglutinin subtypes encoded by VIRUSES. Viral Hemagglutinin,Viral Hemagglutinins,Hemagglutinin, Viral
D006680 HLA Antigens Antigens determined by leukocyte loci found on chromosome 6, the major histocompatibility loci in humans. They are polypeptides or glycoproteins found on most nucleated cells and platelets, determine tissue types for transplantation, and are associated with certain diseases. Human Leukocyte Antigen,Human Leukocyte Antigens,Leukocyte Antigens,HL-A Antigens,Antigen, Human Leukocyte,Antigens, HL-A,Antigens, HLA,Antigens, Human Leukocyte,Antigens, Leukocyte,HL A Antigens,Leukocyte Antigen, Human,Leukocyte Antigens, Human
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

S Dales, and M B Oldstone
April 1979, Journal of immunology (Baltimore, Md. : 1950),
S Dales, and M B Oldstone
November 1976, The Journal of general virology,
S Dales, and M B Oldstone
June 1954, Japanese journal of medical science & biology,
Copied contents to your clipboard!