Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation. 1982

W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly

Compared with normal littermates, the op/op mice had very few macrophages in the peritoneal cavity and severely reduced numbers of monocytes in the peripheral blood. Moreover, osteopetrotic animals demonstrated an altered distribution of hemopoietic tissue with a 10-fold decrease in the number of marrow cells. Liver hemopoiesis persisted in 4-wk-old mice as evidenced by the presence of hemopoietic stem cells (HSC). Moreover, the concentration of HSC was decreased in marrow and increased in the spleen of op/op mice. In spite of the paucity of cells of monocyte-macrophage lineage in vivo, progenitor cells from hemopoietic tissues of op/op mice formed increased numbers of monocyte-macrophage colonies in vitro in the presence of exogenous colony-stimulating activity (CSA). The source of this critical CSA was a medium conditioned by stromal fibroblastoid colonies formed in vitro by normal marrow cells. Therefore, these data suggest that op/op mice possess normal monocyte-macrophage-osteoclast progenitor cells but these cells are unable to fully differentiate in the op/op mouse microenvironment. In support of this, in cultures of stromal fibroblastoid colonies from op/op marrow or spleen, the concomitant growth of macrophages, normally very dense, was drastically reduced. Moreover, transplantation of op/op spleen cells into lethally irradiated littermate recipients resulted in their hemopoietic reconstitution without signs of macrophage defect. Thus, the op/op splenic cells do not transfer the disease and are capable of normal differentiation in normal in vivo environment. These observations support the hypothesis that the defect in op/op mice is a result of the failure of hemopoietic stromal fibroblastoid cells to release sufficient amounts of CSA necessary for normal differentiation of cells of the monocyte-macrophage lineage.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D010022 Osteopetrosis Excessive formation of dense trabecular bone leading to pathological fractures; OSTEITIS; SPLENOMEGALY with infarct; ANEMIA; and extramedullary hemopoiesis (HEMATOPOIESIS, EXTRAMEDULLARY). Albers-Schoenberg Disease,Marble Bone Disease,Osteosclerosis Fragilis,Albers-Schonberg Disease,Albers-Schonberg Disease, Autosomal Dominant,Albers-Schönberg Disease,Autosomal Dominant Osteopetrosis Type 2,Congenital Osteopetrosis,Marble Bones, Autosomal Dominant,Osteopetrosis Autosomal Dominant Type 2,Osteopetrosis, Autosomal Dominant 2,Osteopetrosis, Autosomal Dominant, Type II,Osteosclerosis Fragilis Generalisata,Albers Schoenberg Disease,Albers Schonberg Disease,Albers Schonberg Disease, Autosomal Dominant,Albers Schönberg Disease,Disease, Albers-Schoenberg,Disease, Albers-Schonberg,Disease, Albers-Schönberg,Disease, Marble Bone,Osteopetroses,Osteosclerosis Fragilis Generalisatas
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
September 1991, The American journal of pathology,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
February 1985, Pathologie-biologie,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
April 1998, Journal of submicroscopic cytology and pathology,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
November 1992, The Journal of investigative dermatology,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
January 1993, Journal of leukocyte biology,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
October 1978, Biomedicine / [publiee pour l'A.A.I.C.I.G.],
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
September 1976, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
July 1992, European journal of immunology,
W W Wiktor-Jedrzejczak, and A Ahmed, and C Szczylik, and R R Skelly
February 1996, Biology of reproduction,
Copied contents to your clipboard!