Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. 1982

E Nord, and S H Wright, and I Kippen, and E M Wright

Brush border membrane vesicles were purified from rabbit renal cortex using a calcium-precipitation procedure, and the uptake of carboxylic acids was determined by a rapid-filtration method. L-Lactate, pyruvate (monocarboxylic acids), and succinate (dicarboxylic acid) demonstrated features of Na+ cotransport: enhanced initial rate (1 s) of uptake with an inward Na+ gradient compared with the Na+ -free control condition and transient accumulation of substrate within the vesicles. Kinetic parameters derived for L-lactate and succinate show that each substrate is transported via single pathway and that the two substrates exhibit marginal cross-inhibition. A range of monocarboxylic acids including pyruvate and ketone bodies appear to interact with the monocarboxylic acid carrier. The kinetics of Nat-dependent pyruvate uptake suggest at least two transport pathways-namely, that this monocarboxylate shares both the mono- and dicarboxylic acid carriers. We conclude that isolated rabbit renal microvillus membranes possess independent transport systems for mono- and polycarboxylic acids.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

E Nord, and S H Wright, and I Kippen, and E M Wright
December 1997, Biochimica et biophysica acta,
E Nord, and S H Wright, and I Kippen, and E M Wright
June 1993, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
March 1989, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
April 1993, The Journal of biological chemistry,
E Nord, and S H Wright, and I Kippen, and E M Wright
March 1981, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
March 1987, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
October 1985, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
November 1987, The American journal of physiology,
E Nord, and S H Wright, and I Kippen, and E M Wright
March 1982, Biochemical and biophysical research communications,
E Nord, and S H Wright, and I Kippen, and E M Wright
January 1987, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!