Cathepsin B from human renal cortex. 1982

A D Gounaris, and E E Slater

Cysteine-proteinase activity was observed in homogenates of human-cadaver renal cortex. This activity co-purified with renin enzymic activity until separation by aminohexyl-Sepharose--pepstatin affinity chromatography. The cysteine proteinase was purified 1780-fold after the following successive chromatographic procedures: Sephadex G-75, DEAE-cellulose DE-52, and an organomercurial affinity resin. The proteinase activity was dependent upon activation by thiol-containing compounds such as dithiothreitol, as well as by EDTA, and was inhibited by the thiol-group-specific alkylating reagents iodoacetic acid and N-ethylmaleimide. DE-52 cellulose chromatography resolved the cysteine proteinase into two components. On the basis of molecular size (26 000 daltons), activity as a function of pH, stability as a function of pH, substrate specificity and thermal lability, the major component (95%) has been identified as cathepsin B. The DE-52 cellulose elution pattern of the minor component (5%) is suggestive of cathepsin H [Schwartz & Barrett (1980) Biochem. J. 191, 487-497] Enzymic activity was determined with synthetic substrates, in particular alpha-N-benzoyl-DL-arginine 2-naphthylamide (Bz-Arg-NNap), thus precluding the detection of cathepsin L [Kirschke, Langner, Wiederanders, Ansorge, Bohley & Broghammer (1976) Acta Biol. Med. Germ. 35, 285-299]. Inhibition by dimethyl sulphoxide was observed in the determination of Km = 7.0 +/- 0.4 mM for the substrate Bz-Arg-NNap, and care must therefore be taken in the preparation of substrate solutions.

UI MeSH Term Description Entries
D007672 Kidney Cortex The outer zone of the KIDNEY, beneath the capsule, consisting of KIDNEY GLOMERULUS; KIDNEY TUBULES, DISTAL; and KIDNEY TUBULES, PROXIMAL. Cortex, Kidney
D002401 Cathepsin B A lysosomal cysteine proteinase with a specificity similar to that of PAPAIN. The enzyme is present in a variety of tissues and is important in many physiological and pathological processes. In pathology, cathepsin B has been found to be involved in DEMYELINATION; EMPHYSEMA; RHEUMATOID ARTHRITIS, and NEOPLASM INVASIVENESS. Cathepsin B-Like Proteinase,Cathepsin B1,Cathepsin B Like Proteinase,Proteinase, Cathepsin B-Like
D002403 Cathepsins A group of lysosomal proteinases or endopeptidases found in aqueous extracts of a variety of animal tissues. They function optimally within an acidic pH range. The cathepsins occur as a variety of enzyme subtypes including SERINE PROTEASES; ASPARTIC PROTEINASES; and CYSTEINE PROTEASES. Cathepsin
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D004121 Dimethyl Sulfoxide A highly polar organic liquid, that is used widely as a chemical solvent. Because of its ability to penetrate biological membranes, it is used as a vehicle for topical application of pharmaceuticals. It is also used to protect tissue during CRYOPRESERVATION. Dimethyl sulfoxide shows a range of pharmacological activity including analgesia and anti-inflammation. DMSO,Dimethyl Sulphoxide,Dimethylsulfoxide,Dimethylsulphinyl,Dimethylsulphoxide,Dimexide,Rheumabene,Rimso,Rimso 100,Rimso-50,Sclerosol,Sulfinylbis(methane),Rimso 50,Rimso50,Sulfoxide, Dimethyl,Sulphoxide, Dimethyl
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

A D Gounaris, and E E Slater
February 1978, European journal of biochemistry,
A D Gounaris, and E E Slater
July 1992, The Biochemical journal,
A D Gounaris, and E E Slater
January 1991, Ukrainskii biokhimicheskii zhurnal (1978),
A D Gounaris, and E E Slater
July 1991, The Journal of biological chemistry,
A D Gounaris, and E E Slater
September 1998, Clinical chemistry and laboratory medicine,
A D Gounaris, and E E Slater
January 1985, Progress in clinical and biological research,
A D Gounaris, and E E Slater
January 1996, Advances in experimental medicine and biology,
A D Gounaris, and E E Slater
February 1998, Biological chemistry,
A D Gounaris, and E E Slater
June 2000, Hypertension (Dallas, Tex. : 1979),
Copied contents to your clipboard!