| D008297 |
Male |
|
Males |
|
| D009897 |
Optic Chiasm |
The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. |
Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma |
|
| D009900 |
Optic Nerve |
The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. |
Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves |
|
| D004193 |
Discrimination Learning |
Learning that is manifested in the ability to respond differentially to various stimuli. |
Discriminative Learning,Discrimination Learnings,Discriminative Learnings,Learning, Discrimination,Learning, Discriminative |
|
| D000375 |
Aging |
The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. |
Senescence,Aging, Biological,Biological Aging |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000831 |
Animals, Newborn |
Refers to animals in the period of time just after birth. |
Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals |
|
| D012165 |
Retinal Ganglion Cells |
Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. |
Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell |
|
| D013477 |
Superior Colliculi |
The anterior pair of the quadrigeminal bodies which coordinate the general behavioral orienting responses to visual stimuli, such as whole-body turning, and reaching. |
Colliculus, Superior,Optic Lobe, Human,Optic Lobe, Mammalian,Optic Tectum,Anterior Colliculus,Superior Colliculus,Tectum, Optic,Colliculi, Superior,Colliculus, Anterior,Human Optic Lobe,Human Optic Lobes,Mammalian Optic Lobe,Mammalian Optic Lobes,Optic Lobes, Human,Optic Lobes, Mammalian,Optic Tectums,Tectums, Optic |
|
| D014792 |
Visual Acuity |
Clarity or sharpness of OCULAR VISION or the ability of the eye to see fine details. Visual acuity depends on the functions of RETINA, neuronal transmission, and the interpretative ability of the brain. Normal visual acuity is expressed as 20/20 indicating that one can see at 20 feet what should normally be seen at that distance. Visual acuity can also be influenced by brightness, color, and contrast. |
Acuities, Visual,Acuity, Visual,Visual Acuities |
|