The mechanical effectiveness of short latency reflexes in human triceps surae muscles revealed by ischaemia and vibration. 1982

J H Allum, and K H Mauritz, and H Vögele

The resistance to stretch provided by short latency (SL) reflexes in human triceps surae muscles was investigated under three experimental conditions: control, ischaemia, and with 100 Hz vibration applied to the Achilles tendon. Incremental changes in plantar flexion force always showed a strong initial resistance followed by yielding in response to rapid dorsiflexion of the foot about the ankle joint. These changes were attributed to inherent stiffness of the triceps surae muscles. The force curves for each experimental condition diverged during the yield phase some 20 ms after the onset of SL EMG reflexes. During ischaemia, SL EMG reflexes were reduced to 8% of control values and yielding continued until the onset of medium latency EMG activity whereas the yielding was interrupted by SL action in the control situation. The difference between the ischaemia and control force curves was attributed to force recruited by SL reflexes under normal stretch conditions. Vibration reduced the SL EMG reflex amplitude to 20% of control values and produced with it a reduced force response.

UI MeSH Term Description Entries
D007511 Ischemia A hypoperfusion of the BLOOD through an organ or tissue caused by a PATHOLOGIC CONSTRICTION or obstruction of its BLOOD VESSELS, or an absence of BLOOD CIRCULATION. Ischemias
D007866 Leg The inferior part of the lower extremity between the KNEE and the ANKLE. Legs
D008465 Mechanoreceptors Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures. Golgi Tendon Organ,Golgi Tendon Organs,Krause's End Bulb,Krause's End Bulbs,Mechanoreceptor,Mechanoreceptor Cell,Meissner's Corpuscle,Neurotendinous Spindle,Neurotendinous Spindles,Receptors, Stretch,Ruffini's Corpuscle,Ruffini's Corpuscles,Stretch Receptor,Stretch Receptors,Mechanoreceptor Cells,Bulb, Krause's End,Bulbs, Krause's End,Cell, Mechanoreceptor,Cells, Mechanoreceptor,Corpuscle, Meissner's,Corpuscle, Ruffini's,Corpuscles, Ruffini's,End Bulb, Krause's,End Bulbs, Krause's,Krause End Bulb,Krause End Bulbs,Krauses End Bulb,Krauses End Bulbs,Meissner Corpuscle,Meissners Corpuscle,Organ, Golgi Tendon,Organs, Golgi Tendon,Receptor, Stretch,Ruffini Corpuscle,Ruffini Corpuscles,Ruffinis Corpuscle,Ruffinis Corpuscles,Spindle, Neurotendinous,Spindles, Neurotendinous,Tendon Organ, Golgi,Tendon Organs, Golgi
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D012026 Reflex, Stretch Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors. Reflex, Tendon,Stretch Reflex,Tendon Reflex
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000125 Achilles Tendon Tendon that connects the muscles in the back of the calf to the HEEL BONE. Calcaneal Tendon,Tendo Calcaneus,Calcaneal Tendons,Tendon, Achilles,Tendon, Calcaneal,Tendons, Calcaneal

Related Publications

J H Allum, and K H Mauritz, and H Vögele
January 1986, Acta physiologica Scandinavica. Supplementum,
J H Allum, and K H Mauritz, and H Vögele
December 1993, The Journal of physiology,
J H Allum, and K H Mauritz, and H Vögele
February 1999, Journal of neurophysiology,
J H Allum, and K H Mauritz, and H Vögele
May 1995, Journal of neurophysiology,
J H Allum, and K H Mauritz, and H Vögele
November 1993, The Journal of physiology,
J H Allum, and K H Mauritz, and H Vögele
June 1982, Journal of neurology, neurosurgery, and psychiatry,
J H Allum, and K H Mauritz, and H Vögele
October 2003, Journal of neurophysiology,
J H Allum, and K H Mauritz, and H Vögele
September 2005, Journal of applied physiology (Bethesda, Md. : 1985),
J H Allum, and K H Mauritz, and H Vögele
April 1986, The Journal of physiology,
Copied contents to your clipboard!