Mechanism of resistance to aminoglycoside antibiotics in nebramycin-producing Streptomyces tenebrarius. 1982

H Yamamoto, and K Hotta, and Y Okami, and H Umezawa

Streptomyces tenebrarius ISP 5477, which produces nebramycins, was highly resistant to the following aminoglycoside antibiotics: neamine, ribostamycin, butirosin A, neomycin B, paromomycin, kanamycin A, dibekacin, gentamicin C complex, lividomycin A, istamycin B and streptomycin. Polyphenylalanine synthesis on the ribosomes of this strain was highly resistant to neamine, ribostamycin, butirosin A, kanamycins A, B and C, dibekacin, gentamicin C complex and istamycin B, moderately resistant to lividomycin A and streptomycin, but sensitive to neomycin B and paromomycin. Moreover, cell free extract of the strain contained phosphotransferase and N-acetyltransferase. The former enzyme was confirmed to be an aminoglycoside 6-phosphotransferase which inactivated streptomycin; the latter inactivated kanamycins B and C, dibekacin, neamine, neomycin B, paromomycin, lividomycin A, butirosin A and ribostamycin, but did not inactivate kanamycin A, gentamicin C complex and sagamicin, suggesting an aminoglycoside 2'-acetyltransferase. These results indicated that the high resistance of S. tenebrarius ISP 5477 to a wide range of aminoglycoside antibiotics is due to ribosomal resistance and to the inactivating enzymes, aminoglycoside N-acetyltransferase(s) and aminoglycoside 6-phosphotransferase.

UI MeSH Term Description Entries
D009328 Nebramycin A complex of antibiotic substances produced by Streptomyces tenebrarius.
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004352 Drug Resistance, Microbial The ability of microorganisms, especially bacteria, to resist or to become tolerant to chemotherapeutic agents, antimicrobial agents, or antibiotics. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Antibiotic Resistance,Antibiotic Resistance, Microbial,Antimicrobial Resistance, Drug,Antimicrobial Drug Resistance,Antimicrobial Drug Resistances,Antimicrobial Resistances, Drug,Drug Antimicrobial Resistance,Drug Antimicrobial Resistances,Drug Resistances, Microbial,Resistance, Antibiotic,Resistance, Drug Antimicrobial,Resistances, Drug Antimicrobial
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D013302 Streptomyces A genus of bacteria that form a nonfragmented aerial mycelium. Many species have been identified with some being pathogenic. This genus is responsible for producing a majority of the ANTI-BACTERIAL AGENTS of practical value.

Related Publications

H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
January 1971, Folia microbiologica,
H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
January 1967, Antimicrobial agents and chemotherapy,
H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
June 1992, Gene,
H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
April 1987, Journal of general microbiology,
H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
June 2023, Biochemistry. Biokhimiia,
H Yamamoto, and K Hotta, and Y Okami, and H Umezawa
December 1971, The Journal of infectious diseases,
Copied contents to your clipboard!