One- and two-electron oxidations of tyrosine, monoiodotyrosine, and diiodotyrosine catalyzed by hog thyroid peroxidase. 1982

S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki

Stopped flow experiments were carried out with purified hog thyroid peroxidase (A413 nm/A280 nm = 0.42). In the steady state of oxidations of L- and D-tyrosines, N-acetyltyrosinamide, and monoiodotyrosine, thyroid peroxidase existed in the form of Compound I, the primary catalytic intermediate of peroxidase in its reaction with H2O2. Kinetic results led us to conclude that thyroid peroxidase catalyzes two-electron oxidations of these molecules. In the steady state of oxidation of diiodotyrosine, on the other hand, the enzyme was found in the form of compound II at pH 7.4, but in the form of compound I at pH 5.5. The result implies that the mechanism of diiodotyrosine oxidation varied from a one-electron to a two-electron type as the pH decreased. The selection of mechanisms of oxidation appears to be peculiar to thyroid peroxidase; horseradish peroxidase and lactoperoxidase catalyzed only one-electron oxidations of these five donor molecules. Rate constants for rate-limiting steps in the reactions of these donor molecules with the three peroxidases were measured by overall kinetic and stopped flow kinetic methods.

UI MeSH Term Description Entries
D007453 Iodide Peroxidase A hemeprotein that catalyzes the oxidation of the iodide radical to iodine with the subsequent iodination of many organic compounds, particularly proteins. EC 1.11.1.8. Iodinase,Iodothyronine 5'-Deiodinase,Iodothyronine Deiodinase,Iodotyrosine Deiodase,Thyroid Peroxidase,Thyroxine 5'-Deiodinase,Thyroxine 5'-Monodeiodinase,5'-Deiodinase,Deiodinase,Iodotyrosine Deiodinase,Monodeiodinase,Reverse Triiodothyronine 5'-Deiodinase,T4-5'-Deiodinase,T4-Monodeiodinase,Tetraiodothyronine 5'-Deiodinase,Thyroxine Converting Enzyme,Triiodothyronine Deiodinase,5' Deiodinase,5'-Deiodinase, Iodothyronine,5'-Deiodinase, Reverse Triiodothyronine,5'-Deiodinase, Tetraiodothyronine,5'-Deiodinase, Thyroxine,5'-Monodeiodinase, Thyroxine,Deiodase, Iodotyrosine,Deiodinase, Iodothyronine,Deiodinase, Iodotyrosine,Deiodinase, Triiodothyronine,Enzyme, Thyroxine Converting,Iodothyronine 5' Deiodinase,Peroxidase, Iodide,Peroxidase, Thyroid,Reverse Triiodothyronine 5' Deiodinase,T4 5' Deiodinase,T4 Monodeiodinase,Tetraiodothyronine 5' Deiodinase,Thyroxine 5' Deiodinase,Thyroxine 5' Monodeiodinase,Triiodothyronine 5'-Deiodinase, Reverse
D007470 Monoiodotyrosine A product from the iodination of tyrosine. In the biosynthesis of thyroid hormones (THYROXINE and TRIIODOTHYRONINE), tyrosine is first iodized to monoiodotyrosine. Iodotyrosine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007784 Lactoperoxidase An enzyme derived from cow's milk. It catalyzes the radioiodination of tyrosine and its derivatives and of peptides containing tyrosine.
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010544 Peroxidases Ovoperoxidase
D004105 Diiodotyrosine A product from the iodination of MONOIODOTYROSINE. In the biosynthesis of thyroid hormones, diiodotyrosine residues are coupled with other monoiodotyrosine or diiodotyrosine residues to form T4 or T3 thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Iodogorgoic Acid,Acid, Iodogorgoic
D004579 Electron Transport The process by which ELECTRONS are transported from a reduced substrate to molecular OXYGEN. (From Bennington, Saunders Dictionary and Encyclopedia of Laboratory Medicine and Technology, 1984, p270) Respiratory Chain,Chain, Respiratory,Chains, Respiratory,Respiratory Chains,Transport, Electron
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
March 1998, Free radical biology & medicine,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
August 1989, The Journal of biological chemistry,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
October 1986, The Journal of biological chemistry,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
February 1975, European journal of biochemistry,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
October 1974, Endocrinology,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
February 1972, Enzymologia,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
November 1997, Journal of natural products,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
January 1993, The Journal of biological chemistry,
S Ohtaki, and H Nakagawa, and M Nakamura, and I Yamazaki
December 1959, The Journal of biological chemistry,
Copied contents to your clipboard!