Response of chemically induced hepatocytelike cells in hamster pancreas to methyl clofenapate, a peroxisome proliferator. 1982

M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli

Administration of N-nitrosobis (2-oxopropyl)amine during peak DNA synthesis of regenerating pancreas in hamsters has been shown to induce hepatocytelike cells in pancreas. We now present evidence to demonstrate that such cells respond to methyl clofenapate, a peroxisome proliferator. The response includes a marked proliferation of peroxisomes and enhanced activity of peroxisomal enzymes enoyl-CoA hydratase (8.5- to 13-fold), [1-14C]-palmitoyl-CoA oxidation (2.8- to 3.9-fold), catalase (1.6 to 3.4-fold), and carnitine acetyltransferase (greater than 2,000-fold). Cytochemical localization of catalase by the alkaline 3,3'-diaminobenzidine procedure and immunofluorescence localization of heat-labile enoyl-CoA hydratase showed that these peroxisome-associated enzymes are localized strictly in pancreatic hepatocytelike cells, while adjacent acinar, duct, and islet cells appeared consistently negative. Morphometric analyses of hepatocytelike cells showed a significant increase in the numerical density and an eightfold increase in the volume density of peroxisomes in methyl clofenapate treated animals. These results demonstrate that the hepatocytelike cells are responsible for the observed peroxisomal enzyme activity in pancreas of hamsters and suggest that the derepressed peroxisome specific genes in these cells respond to a peroxisome proliferator as do parenchymal cells in hamster liver.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002992 Clofenapate An oral hypolipemic agent primarily used in DOGS and RATS. Methyl Clofenapate,ICI-55695,Methylclofenapate,Clofenapate, Methyl,ICI 55695,ICI55695
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme

Related Publications

M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
June 1999, Toxicology in vitro : an international journal published in association with BIBRA,
M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
September 1987, Cell biology international reports,
M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
January 2008, Hepatology (Baltimore, Md.),
M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
November 1990, International journal of cancer,
M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
February 1999, Drug metabolism reviews,
M S Rao, and M K Reddy, and J K Reddy, and D G Scarpelli
April 2001, Japanese journal of cancer research : Gann,
Copied contents to your clipboard!