Neural representation of target distance in auditory cortex of the echolocating bat Myotis lucifugus. 1982

W E Sullivan

1. Single- and multiunit recordings were obtained from neurons in the auditory cortex of the echolocating bat Myotis lucifugus, while trains of stimuli designed to simulate the bat's frequency-modulated (FM) orientation pulse and its returning echo were delivered. It was found that many neurons in the cortex responded selectively to pulse-echo pairs only if the time delay separating the artificial pulse and the echo was within a certain range. This response property is called "delay-dependent facilitation." Since echolating bats are known to utilize echo-delay information for the determination of target distance, it is postulated that these neurons are involved in the process of distance perception. 2. Two types of delay-sensitive neurons were characterized on the basis of their response patterns. P-type units had short maximum response delays, narrow delay response functions, and response latencies for pulse-echo pairs that were similar to their response latencies for single loud FM pulses. E-type units had longer maximum response delays, wide delay response functions, and pulse-echo pair response latencies that were time-locked to the echo. Another important difference between these two classes was that changes in the amplitude of the artificial echo caused systematic changes in the delay response of E-type units but not of P-type units. 3. The sharpness and stability of the delay response functions of P-type units suggested that they may encode target distance by responding at discrete echo delays. In contrast, delay tuning may not be an unambiguous determinant of echo delay in E-type units. Here, the most consistent and reliable response parameter for echo delay is the time at which the responses occurred. This suggested that echo delay could be encoded by the temporal pattern of responses in E-type units in relation to the responses evoked by the outgoing orientation cry. The different range of delay of delay sensitivity of P-type and E-type units indicates that these two mechanisms could be operating at different ranges of target distance. 4. P-type and E-type responses may not be due to different populations of neurons but to different response properties of the same population under different conditions. Evidence for this proposition was obtained by showing that in some recordings, decreases in the amplitude of the artificial pulse caused a switch in response from a long best delay, E-type response to a short best delay, P-type response. This suggested that the delay sensitivity of cortical neurons could be under the bat's control based on the intensity of its pulse emissions.

UI MeSH Term Description Entries
D009949 Orientation Awareness of oneself in relation to time, place and person. Cognitive Orientation,Mental Orientation,Psychological Orientation,Cognitive Orientations,Mental Orientations,Orientation, Cognitive,Orientation, Mental,Orientation, Psychological,Orientations,Orientations, Cognitive,Orientations, Mental,Orientations, Psychological,Psychological Orientations
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002685 Chiroptera Order of mammals whose members are adapted for flight. It includes bats, flying foxes, and fruit bats. Bats,Flying Foxes,Horseshoe Bats,Pteropodidae,Pteropus,Rhinolophus,Rousettus,Bat, Horseshoe,Bats, Horseshoe,Foxes, Flying,Horseshoe Bat
D003201 Computers Programmable electronic devices designed to accept data, perform prescribed mathematical and logical operations at high speed, and display the results of these operations. Calculators, Programmable,Computer Hardware,Computers, Digital,Hardware, Computer,Calculator, Programmable,Computer,Computer, Digital,Digital Computer,Digital Computers,Programmable Calculator,Programmable Calculators
D004215 Distance Perception The act of knowing or the recognition of a distance by recollective thought, or by means of a sensory process which is under the influence of a set of prior experiences. Distance Discrimination,Discrimination, Distance,Discriminations, Distance,Perception, Distance
D004455 Echolocation An auditory orientation mechanism involving the emission of high frequency sounds which are reflected back to the emitter (animal). Echolocations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001303 Auditory Cortex The region of the cerebral cortex that receives the auditory radiation from the MEDIAL GENICULATE BODY. Brodmann Area 41,Brodmann Area 42,Brodmann's Area 41,Heschl Gyrus,Heschl's Gyrus,Auditory Area,Heschl's Convolutions,Heschl's Gyri,Primary Auditory Cortex,Temporal Auditory Area,Transverse Temporal Gyri,Area 41, Brodmann,Area 41, Brodmann's,Area 42, Brodmann,Area, Auditory,Area, Temporal Auditory,Auditory Areas,Auditory Cortex, Primary,Brodmanns Area 41,Cortex, Auditory,Cortex, Primary Auditory,Gyrus, Heschl,Gyrus, Heschl's,Gyrus, Transverse Temporal,Heschl Convolutions,Heschl Gyri,Heschls Convolutions,Heschls Gyri,Heschls Gyrus,Primary Auditory Cortices,Temporal Auditory Areas,Temporal Gyrus, Transverse,Transverse Temporal Gyrus
Copied contents to your clipboard!