Bile acid transport in cultured rat hepatocytes. 1982

R W Van Dyke, and J E Stephens, and B F Scharschmidt

The mechanisms of bile acid uptake have been studied with primary monolayer cultures of rat hepatocytes. Hepatocytes were incubated with taurocholic acid (TC), glycocholic acid (GC), cholic acid (CA), glycochenodeoxycholic acid (GCDC), chenodeoxycholic acid (CDCA), deoxycholic acid (DOCA), lithocholic acid (LCA), or cholylglycylhistamine (CCH), a neutral bile acid derivative for 10 s to 60 min in medium containing sodium chloride, sodium chloride with 1 mM ouabain, or choline chloride. Cells were washed free of radioactive tracer, cell-associated radioactivity was quantitated, and bile acid uptake rates, kinetic parameters of uptake, and steady-state bile acid content were calculated. Two mechanisms for bile acid uptake were identified. Uptake of TC, GC, CA, and GCDC occurred predominantly via a sodium-dependent, ouabain-suppressible saturable mechanism, presumably sodium-coupled transport. Estimates of apparent Km and Vmax for these bile acids were TC, 33 micro M and 0.36 nmol . min-1 . mg prot-1; GC, 18 micro M and 0.22 nmol . min-1 . mg prot-1; CA, 13 micro M and 0.10 nmol . min-1 . mg prot; and GCDC, 6 micro M and 0.21 nmol . min-1 . mg prot, respectively. Uptake via this sodium-coupled mechanism exhibited considerable substrate selectivity. It was enhanced by increased ring hydroxylation and amino acid conjugation and decreased by further conjugation with a neutral histamine group (CGH). In contrast, uptake of CDCA, DOCA, LCA, and CGH occurred primarily via a nonsaturable sodium-independent mechanism, possibly simple diffusion. This mechanism accounted for only a small portion of uptake of TC, GC, CA, and GCDC at low bile acid concentrations. Nonsaturable bile acid uptake rates appeared to correlate with decane-buffer partition coefficients and to be related to bile acid structure.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002794 Choline A basic constituent of lecithin that is found in many plants and animal organs. It is important as a precursor of acetylcholine, as a methyl donor in various metabolic processes, and in lipid metabolism. Bursine,Fagine,Vidine,2-Hydroxy-N,N,N-trimethylethanaminium,Choline Bitartrate,Choline Chloride,Choline Citrate,Choline Hydroxide,Choline O-Sulfate,Bitartrate, Choline,Chloride, Choline,Choline O Sulfate,Citrate, Choline,Hydroxide, Choline,O-Sulfate, Choline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

R W Van Dyke, and J E Stephens, and B F Scharschmidt
May 2012, Toxicology and applied pharmacology,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
March 1983, The Journal of biological chemistry,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
July 1991, Journal of biochemistry,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
January 1987, Proceedings of the Chinese Academy of Medical Sciences and the Peking Union Medical College = Chung-kuo i hsueh k'o hsueh yuan, Chung-kuo hsieh ho i k'o ta hsueh hsueh pao,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
February 2010, Toxicology in vitro : an international journal published in association with BIBRA,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
February 1990, Biochimica et biophysica acta,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
November 1985, The Journal of biological chemistry,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
December 1987, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
R W Van Dyke, and J E Stephens, and B F Scharschmidt
July 1988, The American journal of cardiology,
R W Van Dyke, and J E Stephens, and B F Scharschmidt
August 1978, Canadian journal of biochemistry,
Copied contents to your clipboard!