Reactivation of intestinal epithelial cell brush border motility: ATP-dependent contraction via a terminal web contractile ring. 1982

D R Burgess

Various models have been put forward suggesting ways in which brush borders from intestinal epithelial cells may be motile. Experiments documenting putative brush border motility have been performed on isolated brush borders and have generated models suggesting microvillar retraction or microvillar rootlet interactions. The reported Ca++ ATP-induced retraction of microvilli has been shown, instead, to be microvillar dissolution in response to Ca++ and not active brush border motility. I report here studies on the reactivation of motility in intact sheets of isolated intestinal epithelium. Whole epithelial sheets were glycerinated, which leaves the brush border and intercellular junctions intact, and then treated with ATP, PPi, ITP, ADP, GTP, or delta S-ATP. Analysis by video enhanced differential interference-contrast microscopy and thin-section transmission electron microscopy reveals contractions in the terminal web region causing microvilli to be fanned apart in response to ATP and delta S-ATP but not in response to ADP, PPi, ITP, or GTP. Electron microscopy reveals that the contractions occur at the level of the intermediate junction in a circumferential constriction which can pull cells completely apart. This constriction occurs in a location occupied by an actin-containing circumferential band of filaments, as demonstrated by S-1 binding, which completely encircles the terminal web at the level of the intermediate junction. Upon contraction, this band becomes denser and thicker. Since myosin, alpha-actinin and tropomyosin, in addition to actin, have been localized to this region of the terminal web, it is proposed that the intestinal epithelial cell can be motile via a circumferential terminal web contractile ring analogous to the contractile ring of dividing cells.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008857 Microscopy, Interference The science and application of a double-beam transmission interference microscope in which the illuminating light beam is split into two paths. One beam passes through the specimen while the other beam reflects off a reference mirror before joining and interfering with the other. The observed optical path difference between the two beams can be measured and used to discriminate minute differences in thickness and refraction of non-stained transparent specimens, such as living cells in culture. Interferometry, Microscopic,Microinterferometry,Microscopy, Differential Interference Contrast,Microscopy, Interference Reflection,Microscopy, Nomarski Interference Contrast,Interference Microscopy,Interference Reflection Microscopy,Microscopic Interferometry,Reflection Microscopy, Interference
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

D R Burgess
August 1987, Biochimica et biophysica acta,
D R Burgess
July 1987, Bulletin of environmental contamination and toxicology,
D R Burgess
May 2005, Biochemical and biophysical research communications,
D R Burgess
January 1953, Biochimica et biophysica acta,
Copied contents to your clipboard!