Acute toxicity of methanol in the folate-deficient acatalasemic mouse. 1982

E N Smith, and R T Taylor

Formate acidosis is the chief measurable biochemical characteristic of acute methanol toxicity in man. Its marked elevation in the blood stream of primates has been proposed to account for their much greater susceptibility versus rodents to methanol poisoning. Therefore, a study was undertaken to assess whether folic acid deficient (FAD) mice which accumulate formate are much more sensitive to the lethal effects of this alcohol than folic acid sufficient (FAS) mice. Moreover, because some formate is oxidized by catalase-H2O2 in rodents, but not in primates, we also compared the urinary excretion and blood plasma accumulation of formate and the methanol sensitivity of acatalasemic mice. Methanol-dosed C57BL/6Csb (acatalasemic) mice exhibit slightly lower LD50S than CSa (normal catalase) mice, irrespective of their folate state. CSb-FAD mice excreted much more formate and developed higher plasma formate concentrations (11-17 mM) than identically dosed CSa-FAD animals (6 mM). However, in no instance did a folate deficiency produce a large reciprocal decrease in the oral or i.p. LD50 that would be expected from a huge increase (greater than 10-fold) in the 24-h blood plasma formate level. A low methionine (0.2%) intake did not decrease the oral methanol LD50 of CSb-FAD mice, although excess dietary methionine (1.8%) did lower it from 7.1 to 6.4 g/kg. Methanol treated (4 g/kg) Csb-FAD mice excreted 30.8-48.2% of the oral dose as urinary formate, depending on the level of dietary methionine. Csb-FAS and -FAD mice which were given 2 g/kg sodium formate orally (LD50 = 4.7 and 3.7 g/kg) cleared this dose from the blood within 24 h and excreted 58% and 76% of it, respectively, in the urine. Our results indicate that the plasma formate concentration does not correlate well with methanol lethality in Csb-FAS vs. -FAD mice. In addition, urinary excretion, not oxidation, is the primary means by which mice, and probably rats, eliminate high levels of blood formate. Since the Csb-FAD mouse attains high plasma formate levels and low blood pH-values similar to those which have been reported for methanol poisoned monkeys, it appears to be of value as an inexpensive small animal model for further studies of lethal methanol toxicity and the contribution of formate to this process.

UI MeSH Term Description Entries
D008297 Male Males
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D005260 Female Females
D005494 Folic Acid Deficiency A nutritional condition produced by a deficiency of FOLIC ACID in the diet. Many plant and animal tissues contain folic acid, abundant in green leafy vegetables, yeast, liver, and mushrooms but destroyed by long-term cooking. Alcohol interferes with its intermediate metabolism and absorption. Folic acid deficiency may develop in long-term anticonvulsant therapy or with use of oral contraceptives. This deficiency causes anemia, macrocytic anemia, and megaloblastic anemia. It is indistinguishable from vitamin B 12 deficiency in peripheral blood and bone marrow findings, but the neurologic lesions seen in B 12 deficiency do not occur. (Merck Manual, 16th ed) Deficiency, Folic Acid,Acid Deficiencies, Folic,Acid Deficiency, Folic,Deficiencies, Folic Acid,Folic Acid Deficiencies
D005561 Formates Derivatives of formic acids. Included under this heading are a broad variety of acid forms, salts, esters, and amides that are formed with a single carbon carboxy group. Formic Acids,Acids, Formic
D000432 Methanol A colorless, flammable liquid used in the manufacture of FORMALDEHYDE and ACETIC ACID, in chemical synthesis, antifreeze, and as a solvent. Ingestion of methanol is toxic and may cause blindness. Alcohol, Methyl,Carbinol,Sodium Methoxide,Wood Alcohol,Alcohol, Wood,Methoxide, Sodium,Methyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

E N Smith, and R T Taylor
June 1976, Nature,
E N Smith, and R T Taylor
January 1990, Physiological chemistry and physics and medical NMR,
E N Smith, and R T Taylor
July 2003, Drug and alcohol dependence,
E N Smith, and R T Taylor
April 1993, Fundamental and applied toxicology : official journal of the Society of Toxicology,
E N Smith, and R T Taylor
January 1960, Medicina experimentalis : International journal of experimental medicine,
E N Smith, and R T Taylor
November 2014, FEBS letters,
E N Smith, and R T Taylor
May 1966, Genetics,
E N Smith, and R T Taylor
October 1996, Bulletin of environmental contamination and toxicology,
Copied contents to your clipboard!