Effects of cholinergic drugs and adrenergic drugs on aqueous humor formation in the rabbit eye. 1982

H Miichi, and S Nagataki

The aqueous humor formation rate was determined in the anesthetized rabbit with a tracer dilution technique. The anterior chamber was cannulated with two 25-gauge needles: one was inserted into the posterior chamber through the pupil and the other was placed in the anterior chamber near the iridocorneal angle. Fluorescein-dextran solution was infused into the posterior chamber at a constant rate and the aqueous humor was collected through the anterior chamber needle. The aqueous humor formation rate and the volume of dye distribution were calculated simultaneously from the dye dilution curve. Utilizing this technique, the effects of the following substances on aqueous humor formation were studied following topical administration to the conjunctival reservoir: cholinomimetic drugs, pilocarpine and physostigmine; the parasympatholytic drug, atropine; adrenoceptor agonists, norepinephrine, epinephrine, isoproterenol and salbutamol; and beta-adrenoceptor antagonists, timolol and propranolol. Cholinomimetic drugs, i.e., pilocarpine 0.1 mg ml-1 to 10 mg ml-1 and physostigmine 1 mg ml-1, increased the aqueous humor formation rate, while atropine 1 mg ml-1 decreased the rate. The increase in aqueous humor formation by the cholinomimetics was completely antagonized with simultaneous administration of atropine. Norepinephrine 5 mg ml-1 and epinephrine 5 mg ml-1 reduced significantly both the aqueous humor formation rate and intraocular pressure (IOP). Isoproterenol 5 mg ml-1 caused a significant lowering of the blood pressure and IOP and tended to lower aqueous humor formation, although the decrease was not statistically significant. No significant effect on the blood pressure, IOP or aqueous humor formation was observed with isoproterenol 2 mg ml-1. Salbutamol 5 mg ml-1 raised the IOP while timolol 1 mg ml-1 lowered the IOP without any significant change in aqueous humor formation or blood pressure. Timolol 0.5 mg ml-1 or propranolol 5 mg ml-1 did not cause a significant effect on the blood pressure, IOP or aqueous humor formation rate.

UI MeSH Term Description Entries
D007429 Intraocular Pressure The pressure of the fluids in the eye. Ocular Tension,Intraocular Pressures,Ocular Tensions,Pressure, Intraocular,Pressures, Intraocular,Tension, Ocular,Tensions, Ocular
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D010830 Physostigmine A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Eserine
D010862 Pilocarpine A slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. Isopilocarpine,Isoptocarpine,Ocusert,Pilocarpine Hydrochloride,Pilocarpine Mononitrate, (3S-cis)-Isomer,Pilocarpine Nitrate,Pilocarpine, Monohydrochloride, (3S-cis)-Isomer,Salagen,Hydrochloride, Pilocarpine,Nitrate, Pilocarpine
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine

Related Publications

H Miichi, and S Nagataki
February 1979, Experimental eye research,
H Miichi, and S Nagataki
April 1964, The Journal of pharmacology and experimental therapeutics,
H Miichi, and S Nagataki
March 2003, Investigative ophthalmology & visual science,
H Miichi, and S Nagataki
December 1977, Nippon Ganka Gakkai zasshi,
H Miichi, and S Nagataki
January 1982, Experimental eye research,
H Miichi, and S Nagataki
September 1981, Experimental eye research,
H Miichi, and S Nagataki
August 1963, Investigative ophthalmology,
Copied contents to your clipboard!