Conformational changes of creatine kinase during guanidine denaturation. 1982

Q Z Yao, and L X Hou, and H M Zhou, and C G Zou

The conformational changes of creatine kinase during denaturation by different concentrations of guanidine hydrochloride have been studied by fluorescence and ultraviolet difference spectroscopic methods. At low concentrations of guanidine, less than 1 M, the denatured minus native difference spectra showed two negative peaks at 281 and 287 nm, whereas the fluorescence emission increased markedly with its maximum red-shifted from 337 to 345 nm. Control experiments showed that guanidine also increased the emission of ionized tyrosine at 345 nm. With the increase of concentrations of guanidine, both negative peaks at 281 and 287 nm increased in magnitude to reach maximal values at 3 M guanidine and at this time a small peak appeared at 292 nm. The fluorescence maximum was further red-shifted to 355 nm, whereas the emission intensity of the main peak decreased and a small shoulder appeared at 310 nm when the guanidine concentration increased from 1 to 3 M. Further increase in guanidine concentration produced little further change either in UV absorption or in fluorescence. From the above results, it seems that, in the native enzyme. Trp residues are partly buried and partly exposed and some of the Tyr residues are in ionized state. Guanidine below 1 M does not expose the buried Trp residues nor affects significantly the microenvironments of the ionized Tyr residues. At 3 M guanidine, Trp residues are exposed and the ionization state of Tyr residues is also affected. At this concentration, the peptide chain seems to be fully unfolded as evidenced by the fact that 5 M guanidine produces little further change in both UV absorption and fluorescence.

UI MeSH Term Description Entries
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D019791 Guanidine A strong organic base existing primarily as guanidium ions at physiological pH. It is found in the urine as a normal product of protein metabolism. It is also used in laboratory research as a protein denaturant. (From Martindale, the Extra Pharmacopoeia, 30th ed and Merck Index, 12th ed) It is also used in the treatment of myasthenia and as a fluorescent probe in HPLC. Guanidine Hydrochloride,Guanidinium,Guanidinium Chloride,Guanidine Monohydrate,Guanidine Monohydrobromide,Guanidine Monohydrochloride,Guanidine Monohydroiodine,Guanidine Nitrate,Guanidine Phosphate,Guanidine Sulfate,Guanidine Sulfate (1:1),Guanidine Sulfate (2:1),Guanidine Sulfite (1:1),Guanidium Chloride,Chloride, Guanidinium,Chloride, Guanidium,Hydrochloride, Guanidine,Monohydrate, Guanidine,Monohydrobromide, Guanidine,Monohydrochloride, Guanidine,Monohydroiodine, Guanidine,Nitrate, Guanidine,Phosphate, Guanidine,Sulfate, Guanidine

Related Publications

Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
September 1997, Biochemistry and molecular biology international,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
November 1995, Biochimica et biophysica acta,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
November 2001, European journal of biochemistry,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
January 1987, Biochimica et biophysica acta,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
August 1998, Biochemistry and molecular biology international,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
October 1999, Journal of protein chemistry,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
January 2013, Applied biochemistry and biotechnology,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
July 1996, Biochimica et biophysica acta,
Q Z Yao, and L X Hou, and H M Zhou, and C G Zou
June 1993, Biochimica et biophysica acta,
Copied contents to your clipboard!