Composition and structure of assimilatory nitrate reductase from Ankistrodesmus braunii. 1981

M A De la Rosa, and J M Vega, and W G Zumft

Assimilatory NAD(P)H-nitrate reductase (EC 1.6.6.2) from Ankistrodesmus braunii has been purified to homogeneity by affinity chromatography on blue Sepharose. The specific activity of the purified enzyme is in the range of 72 to 80 units/mg of protein. The electronic spectrum of the native enzyme shows absorption maxima at 278, 414 (Soret), 532 (beta), 562 (alpha), and 669 nm and shoulders at 455 and 484 nm, with an A278/A414 ratio of 2.56. The reduced enzyme shows absorption maxima at 424 (Soret), 528 (beta), 557 (alpha),and 669 n. The enzyme complex (Mr = 467,400) is composed of eight similar subunits (Mr = 58,750) and contains 4 molecules of FAD, 4 heme groups, and 2 atoms of molybdenum. Labile sulfide and nonheme iron were not detected. Electron micrographs show the eight subunits arranged alternately in two planes, and an 8-fold rotational symmetry was deduced from highly magnified images processed by optical superposition.

UI MeSH Term Description Entries
D007501 Iron A metallic element with atomic symbol Fe, atomic number 26, and atomic weight 55.85. It is an essential constituent of HEMOGLOBINS; CYTOCHROMES; and IRON-BINDING PROTEINS. It plays a role in cellular redox reactions and in the transport of OXYGEN. Iron-56,Iron 56
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D008982 Molybdenum A metallic element with the atomic symbol Mo, atomic number 42, and atomic weight 95.95. It is an essential trace element, being a component of the enzymes xanthine oxidase, aldehyde oxidase, and nitrate reductase. Molybdenum-98,Molybdenum 98
D009565 Nitrate Reductases Oxidoreductases that are specific for the reduction of NITRATES. Reductases, Nitrate
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D005415 Flavins Derivatives of the dimethylisoalloxazine (7,8-dimethylbenzo[g]pteridine-2,4(3H,10H)-dione) skeleton. Flavin derivatives serve an electron transfer function as ENZYME COFACTORS in FLAVOPROTEINS.
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D000460 Chlorophyta A phylum of photosynthetic EUKARYOTA bearing double membrane-bound plastids containing chlorophyll a and b. They comprise the classical green algae, and represent over 7000 species that live in a variety of primarily aquatic habitats. Only about ten percent are marine species, most live in freshwater. Algae, Green,Chlorophytina,Green Algae
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M A De la Rosa, and J M Vega, and W G Zumft
January 1983, Molecular and cellular biochemistry,
M A De la Rosa, and J M Vega, and W G Zumft
January 1977, Planta,
M A De la Rosa, and J M Vega, and W G Zumft
January 1970, Archiv fur Mikrobiologie,
M A De la Rosa, and J M Vega, and W G Zumft
September 1986, Plant physiology,
M A De la Rosa, and J M Vega, and W G Zumft
March 1977, Archives of microbiology,
M A De la Rosa, and J M Vega, and W G Zumft
February 1961, Science (New York, N.Y.),
M A De la Rosa, and J M Vega, and W G Zumft
July 1974, European journal of biochemistry,
Copied contents to your clipboard!