The influence of pH on phosphate transport into rat renal brush border membrane vesicles. 1981

G Burckhardt, and H Stern, and H Murer

Sodium-dependent transport of inorganic phosphate into brush border membrane vesicles is strongly influenced by altering pH of the incubation medium (pHo). At constant total phosphate concentration an increase in pHo leads to an increase in the uptake of inorganic phosphate. Uptake of inorganic phosphate, however, is not affected by the intravesicular pH (pHi) or by transmembrane pH differences (pHo--pHi). If initial phosphate uptake is studied as a function of total phosphate concentration in the medium the half saturation concentration increases when pHo is raised from 6.3--6.9 but remains unaltered between pHo 6.9 and 7.8 Vmax increases about 3-fold between pHo 6.3 and 6.9 and by a factor of about 1.6 between pHo 6.9 and 7.4. The pHo- dependence of phosphate uptake is diminished by increasing sodium concentrations. Altering transmembrane electrical potential difference by potassium + valinomycin-induced diffusion potentials or by anion replacement fails to demonstrate electrogenicity of sodium-phosphate cotransport. Experiments using a potential-sensitive fluorescent dye, however, indicate a vesicle inside positive electrical potential difference when inorganic phosphate is added. The phosphate-induced alterations in the electrical potential difference are sodium-dependent and more pronounced at low pHo values. Together with earlier observations these results suggest that translocation of inorganic phosphate across the proximal tubular brush border membrane is mediated by cotransport of 2 sodium ions with one either monovalent or divalent phosphate molecule according to its availability in the tubular fluid. The pH sensitivity of this transport system is rather due to alterations in the transport system itself than to pH- dependent alterations in the ratio of monovalent to divalent phosphate.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D014634 Valinomycin A cyclododecadepsipeptide ionophore antibiotic produced by Streptomyces fulvissimus and related to the enniatins. It is composed of 3 moles each of L-valine, D-alpha-hydroxyisovaleric acid, D-valine, and L-lactic acid linked alternately to form a 36-membered ring. (From Merck Index, 11th ed) Valinomycin is a potassium selective ionophore and is commonly used as a tool in biochemical studies.
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

G Burckhardt, and H Stern, and H Murer
May 1985, The American journal of physiology,
G Burckhardt, and H Stern, and H Murer
February 1984, The American journal of physiology,
G Burckhardt, and H Stern, and H Murer
September 1985, The Journal of nutrition,
G Burckhardt, and H Stern, and H Murer
December 1976, The Biochemical journal,
G Burckhardt, and H Stern, and H Murer
January 1990, The Journal of clinical investigation,
G Burckhardt, and H Stern, and H Murer
January 1984, Advances in experimental medicine and biology,
G Burckhardt, and H Stern, and H Murer
May 2000, Kidney international,
G Burckhardt, and H Stern, and H Murer
May 1993, Biochemical pharmacology,
G Burckhardt, and H Stern, and H Murer
December 1985, Pediatric research,
Copied contents to your clipboard!