Electrophysiological study of Syrian hamster hereditary cardiomyopathy. 1978

K L Rossner, and H G Sachs

This study was performed to determine if the intracellular electrical activity of adult cardiac papillary muscle from a strain of Syrian hamster (B10 14.6) with a genetically determined cardiomyopathy was different from that of a control strain (B10 RB). Muscles driven at rates from 1 Hz through the physiological range. Resting potentials of muscle from the two strains were not significantly different, except in increased [C2+]0, where the control was slightly hyperpolarised. Action potential overshoot was significantly greater in the myopathic at all frequencies, while the upstroke velocity was not significantly different, except at 8 Hz where the myopathic value was depressed. Action potential durations at 20, 50 and 95% repolarisation were significantly greater in the myopathic, at all rates and with increased [C2+]0. Response of the muscles to verapamil and D600 were complex, with a decrease seen in duration at 20% repolarisation and an increase in 50% duration at 1 Hz rate. No strain-related difference in sensitivity to the drugs was seen. The results supporty the hypothesis that a sarcolemmal defect is intimately related to the genesis of the cardiomyopathy.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009202 Cardiomyopathies A group of diseases in which the dominant feature is the involvement of the CARDIAC MUSCLE itself. Cardiomyopathies are classified according to their predominant pathophysiological features (DILATED CARDIOMYOPATHY; HYPERTROPHIC CARDIOMYOPATHY; RESTRICTIVE CARDIOMYOPATHY) or their etiological/pathological factors (CARDIOMYOPATHY, ALCOHOLIC; ENDOCARDIAL FIBROELASTOSIS). Myocardial Disease,Myocardial Diseases,Myocardial Diseases, Primary,Myocardial Diseases, Secondary,Myocardiopathies,Primary Myocardial Disease,Cardiomyopathies, Primary,Cardiomyopathies, Secondary,Primary Myocardial Diseases,Secondary Myocardial Diseases,Cardiomyopathy,Cardiomyopathy, Primary,Cardiomyopathy, Secondary,Disease, Myocardial,Disease, Primary Myocardial,Disease, Secondary Myocardial,Diseases, Myocardial,Diseases, Primary Myocardial,Diseases, Secondary Myocardial,Myocardial Disease, Primary,Myocardial Disease, Secondary,Myocardiopathy,Primary Cardiomyopathies,Primary Cardiomyopathy,Secondary Cardiomyopathies,Secondary Cardiomyopathy,Secondary Myocardial Disease
D010210 Papillary Muscles Conical muscular projections from the walls of the cardiac ventricles, attached to the cusps of the atrioventricular valves by the chordae tendineae. Muscle, Papillary,Muscles, Papillary,Papillary Muscle
D005711 Gallopamil Coronary vasodilator that is an analog of iproveratril (VERAPAMIL) with one more methoxy group on the benzene ring. Methoxyverapamil,D-600,D600,Elgiprona,Gallobeta,Gallopamil Hydrochloride,Prebet,Procorum,gallopamil von ct,D 600,Hydrochloride, Gallopamil
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014700 Verapamil A calcium channel blocker that is a class IV anti-arrhythmia agent. Iproveratril,Calan,Cordilox,Dexverapamil,Falicard,Finoptin,Isoptin,Isoptine,Izoptin,Lekoptin,Verapamil Hydrochloride,Hydrochloride, Verapamil
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

K L Rossner, and H G Sachs
January 1976, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
K L Rossner, and H G Sachs
January 1973, Recent advances in studies on cardiac structure and metabolism,
K L Rossner, and H G Sachs
December 1988, Journal of the American College of Cardiology,
K L Rossner, and H G Sachs
January 1975, Recent advances in studies on cardiac structure and metabolism,
K L Rossner, and H G Sachs
April 1997, Human molecular genetics,
K L Rossner, and H G Sachs
January 1972, The Journal of heredity,
K L Rossner, and H G Sachs
January 1971, Verhandlungen der Deutschen Gesellschaft fur Innere Medizin,
Copied contents to your clipboard!