Pluripotent (CFU-S) and granulocyte-committed (CFU-C) stem cells in intact and 89Sr marrow-ablated S1/S1d mice. 1978

S S Adler, and F E Trobaugh

Peripheral blood values, femur cell counts, spleen weights, pluripotent (CFU-S) and granulocyte progenitor cell (CFU-C) concentrations and total content of spleens and femurs have been evaluated in intact (non-marrow-ablated) and 89Sr marrow-ablated S1/S1d and +/+ mice. 89Sr-irradiated mice were studied 6 and 11 days after the administration of 89Sr. In intact S1/S1d mice the femur CFU-S concentration, total femur CFU-S, femur CFU-C concentration and total femur CFU-C were 84, 54, 105 and 68% that of +/+ mice femurs respectively; the respective values for the spleens of S1/S1d mice were 40, 46, 61 and 69%. These are the first simultaneous determinations of CFU-S and CFU-C concentrations, and content of spleens and marrows, of S1/S1d and +/+ mice. In 98Sr marrow-ablated mice, 11 days after injection of the radionuclide: (a) the total content of marrow CFU-C and CFU-S was about 1% of that found in the marrows of intact mice for both +/+ and S1/S1d groups; (b) the spleens of +/+ mice increased in weight to 162% of the control, but the spleens of S1/S1d mice did not increase in weight; and (c) the spleens of +/+ mice had a total content of CFU-C and CFU-S of 800% and 260% of the control, respectively, whereas the respective values for the S1/S1d mice were 120% and 76% of the control. Thus the S1/S1d spleen fails to compensate for marrow ablation by housing additional CFU-S and has an impaired ability to compensate by housing additional CFU-C.

UI MeSH Term Description Entries
D007958 Leukocyte Count The number of WHITE BLOOD CELLS per unit volume in venous BLOOD. A differential leukocyte count measures the relative numbers of the different types of white cells. Blood Cell Count, White,Differential Leukocyte Count,Leukocyte Count, Differential,Leukocyte Number,White Blood Cell Count,Count, Differential Leukocyte,Count, Leukocyte,Counts, Differential Leukocyte,Counts, Leukocyte,Differential Leukocyte Counts,Leukocyte Counts,Leukocyte Counts, Differential,Leukocyte Numbers,Number, Leukocyte,Numbers, Leukocyte
D008297 Male Males
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D003114 Colony-Forming Units Assay A cytologic technique for measuring the functional capacity of stem cells by assaying their activity. Clonogenic Cell Assay,Stem Cell Assay,Clonogenic Cell Assays,Colony Forming Units Assays,Colony-Forming Units Assays,Stem Cell Assays,Assay, Clonogenic Cell,Assay, Colony-Forming Units,Assay, Stem Cell,Assays, Clonogenic Cell,Assays, Colony-Forming Units,Assays, Stem Cell,Colony Forming Units Assay
D005269 Femur The longest and largest bone of the skeleton, it is situated between the hip and the knee. Trochanter,Greater Trochanter,Lesser Trochanter,Femurs,Greater Trochanters,Lesser Trochanters,Trochanter, Greater,Trochanter, Lesser,Trochanters,Trochanters, Greater,Trochanters, Lesser
D006098 Granulocytes Leukocytes with abundant granules in the cytoplasm. They are divided into three groups according to the staining properties of the granules: neutrophilic, eosinophilic, and basophilic. Mature granulocytes are the NEUTROPHILS; EOSINOPHILS; and BASOPHILS. Granulocyte
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming

Related Publications

S S Adler, and F E Trobaugh
March 1977, The Journal of laboratory and clinical medicine,
S S Adler, and F E Trobaugh
December 1979, International journal of radiation biology and related studies in physics, chemistry, and medicine,
S S Adler, and F E Trobaugh
May 1987, Cell and tissue kinetics,
S S Adler, and F E Trobaugh
July 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S S Adler, and F E Trobaugh
January 2002, Methods in molecular medicine,
S S Adler, and F E Trobaugh
January 1999, Stem cells (Dayton, Ohio),
S S Adler, and F E Trobaugh
February 1986, Experimental hematology,
S S Adler, and F E Trobaugh
July 1979, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S S Adler, and F E Trobaugh
March 1979, Blood,
Copied contents to your clipboard!