Water-electrolyte balance in goldfish Carassius auratus, under constant and diurnally cycling temperature conditions. 1982

A H Houston, and T F Koss

1. The effects of acclimation to constant and diurnally cycling temperatures upon water-electrolyte regulation were examined in goldfish held at 20, 25, 30 and 25 +/- 5 degrees C, and sampled at 03.00, 09.00 15.00 and 21.00 h. Plasma and epaxial muscle levels of Na, K, Ca, Mg, Cl and water were determined. Using Cl space as an indicator of extracellular phase volume, mean cellular cation concentrations were estimated. 2. Fish held at constant temperature exhibited significant diurnal variations in all ions except plasma magnesium and muscle potassium. With the exception of muscle choride, however, the occurrence of peak and/or minimum concentrations tended to be inconsistent in relation to specific sampling times. Somewhat more regularity was apparent in terms of dark or light periods. 3. Under constant temperature conditions plasma Cl increased with increasing temperature, while Na declined. Plasma magnesium was consistently higher at 25 degrees C than at either 20 or 30 degrees C. This was true of muscle Mg as well and, generally, also of Na, K and Cl. Water content tended to rise at higher temperatures in these animals, as did cellular phase volume, while extracellular phase volume was reduced. 4. Exposure to cycling temperatures was associated with a number of significant departures from the pattern seen at constant temperature. Ionic concentrations tended to be lower. By comparison with animals sampled at constant temperature and comparable times, diurnal stability was greater. In several instances (e.g. muscle Cl- and K+, cellular and extracellular phase volumes) variations with temperature were significantly different. This was also the case with ion pairs such as K and Na, and Ca and Mg. 5. These observations raise obvious questions regarding the validity of earlier descriptions of water-electrolyte status in species normally exposed to fluctuating temperatures. The variations seen under cycling temperature conditions, however, appeared to be adaptively appropriate. Reductions in plasma ion levels, for example, would tend to reduce costs of ionic regulation. The stability of plasma: cellular K concentrations should desensitize muscular excitability in relation to changing temperature conditions. This was also true of cellular levels of generally stimulating (Mg, K) and generally inhibitory ions (Ca, Na) known to influence metabolic processes.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

A H Houston, and T F Koss
April 1969, General and comparative endocrinology,
A H Houston, and T F Koss
March 1956, The American journal of physiology,
A H Houston, and T F Koss
January 2019, General and comparative endocrinology,
A H Houston, and T F Koss
September 1965, Canadian journal of zoology,
A H Houston, and T F Koss
April 1970, Comparative biochemistry and physiology,
A H Houston, and T F Koss
January 2019, The International journal of developmental biology,
Copied contents to your clipboard!