Studies on cell adhesion and recognition. II. The kinetics of cell adhesion and cell spreading on surfaces coated with carbohydrate-reactive proteins (glycosidases and lectins) and fibronectin. 1981

W G Carter, and H Rauvala, and S I Hakomori

The kinetics of cell attachment and cell spreading on the coated surfaces of two classes of carbohydrate-reactive proteins, enzymes and lectins, have been compared with those on fibronectin-coated surfaces with the following results: (a) A remarkable similarity between the kinetics of cell attachment to fibronectin-coated and glycosidase-coated surfaces was found. In contrast, cell attachment kinetics induced by lectin- and galactose oxidase-coated surfaces, in general, were strikingly different from those on fibronectin and glycosidase surfaces. The distinction between fibronectin- or glycosidase- and lectin- or galactose oxidase (an enzyme with lectin-type characteristics)-coated surfaces was further supported by the finding that cytochalasin B and EDTA inhibited cell attachment to fibronectin- and glycosidase-coated surfaces but not lectin-coated surfaces. (b) Fibronectin, if labeled and added to a cell suspension, showed only low or negligible interaction with the cell surface. However, fibronectin absorbed on plastic surfaces showed a high cell-attaching activity. It is assumed that fibronectin coated on plastic surfaces may form polyvalent attachment sites in contrast to its lower valency in aqueous solution. (c) Various inhibitors of cell attachment to both fibronectin-, galactose oxidase-, and lectin-coated surfaces were effective only during the first few minutes of the adhesion assay, after which time the attached cells became insensitive to the inhibitors. It is suggested that the initial specific recognition on either lectin-type or fibronectin-type surfaces is followed by an active cell-dependent attachment process. The primary role of the adhesion surface is to stimulate the cell-dependent attachment response. (d) Cells attached on tetravalent concanavalin A (Con A) spread very rapidly and quantitatively, whereas divalent succinyl Con A and monovalent Con A were effective stimulators of cell attachment but not cell spreading. Cross-linking of succinyl Con A restored the cell spreading activity. Tetravalent Con A surfaces specifically bind soluble glycoproteins, whereas succinyl Con A has a greatly reduced ability to bind the same glycoproteins. These results suggest that cross-linking of cell surface glycoproteins by the multivalent adhesive surface may trigger the cellular reaction leading to cell spreading.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D003958 Diamide A sulfhydryl reagent which oxidizes sulfhydryl groups to the disulfide form. It is a radiation-sensitizing agent of anoxic bacterial and mammalian cells. Diazodicarboxylic Acid Bis(N,N-dimethyl)amide,Diazodicarboxylic Acid Bisdimethylamide,Dizene Dicarboxylic Acid Bis(N,N-dimethylamide),Dizenedicarboxylic Acid Bis(N,N-dimethylamide),Tetramethylazoformamide,Acid Bisdimethylamide, Diazodicarboxylic,Bisdimethylamide, Diazodicarboxylic Acid
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006026 Glycoside Hydrolases Any member of the class of enzymes that catalyze the cleavage of the glycosidic linkage of glycosides and the addition of water to the resulting molecules. Endoglycosidase,Exoglycosidase,Glycohydrolase,Glycosidase,Glycosidases,Glycoside Hydrolase,Endoglycosidases,Exoglycosidases,Glycohydrolases,Hydrolase, Glycoside,Hydrolases, Glycoside
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

W G Carter, and H Rauvala, and S I Hakomori
January 1993, Ukrainskii biokhimicheskii zhurnal (1978),
W G Carter, and H Rauvala, and S I Hakomori
June 1989, Journal of biomedical materials research,
W G Carter, and H Rauvala, and S I Hakomori
January 1974, Johns Hopkins medical journal. Supplement,
W G Carter, and H Rauvala, and S I Hakomori
May 2011, Colloids and surfaces. B, Biointerfaces,
W G Carter, and H Rauvala, and S I Hakomori
September 1994, Thrombosis research,
W G Carter, and H Rauvala, and S I Hakomori
January 2015, Cell adhesion & migration,
W G Carter, and H Rauvala, and S I Hakomori
May 1993, The Journal of cell biology,
W G Carter, and H Rauvala, and S I Hakomori
June 2003, European cells & materials,
W G Carter, and H Rauvala, and S I Hakomori
October 1995, Cell structure and function,
Copied contents to your clipboard!