Density and distribution of alpha-bungarotoxin-binding sites in postsynaptic structures of regenerated rat skeletal muscle. 1981

D Bader

Acetylcholine receptors (AChR) are organized in a discrete and predictable fashion in the postsynaptic regions of vertebrate skeletal muscle. When muscle is damaged, nerves and myofibers including muscular elements of the endplate degenerate, but the connective tissue elements survive. Muscle fibers regenerate within the basal lamina of the original myofiber. Postsynaptic differentiation in regenerated mammalian skeletal muscle can occur in different ways: (a) at the site of the original endplate in the presence or absence of the nerve, or (b) at ectopic regions of the regenerated myofiber in the presence of the nerve when the original endplate is not present. The present study used (125)I-alpha- bungarotoxin ((125)I-alpha-BuTX) and EM autoradiography to examine the density and distribution of AChR in postsynaptic structures regenerated at the site of the original endplate in the absence of the nerve and at ectopic sites of the myofiber in the presence of the nerve when the original endplate was removed. In regenerated myofibers, the density of alpha-BuTX-binding sites fell within the range of densities observed in uninjured muscle whether postsynaptic differentiation occurred at the site of the original endplate in the absence of the nerve or at an originally ectopic position of the regenerated myofiber. In addition, the distribution of alpha-BuTX-binding sites within the regenerated postsynaptic regions closely resembled the distribution of apha-BuTX- binding sites in uninjured muscle. Morphometric analysis was performed on postsynaptic structures formed at the site of the original endplate in the absence of the nerve or at an ectopic position of the regenerated myofiber by interaction of the nerve and muscle. Although variation in the depth of the primary cleft occurred, there was little difference between the overall structure of regenerated postsynaptic structures and that of endplates of uninjured muscles.

UI MeSH Term Description Entries
D009045 Motor Endplate The specialized postsynaptic region of a muscle cell. The motor endplate is immediately across the synaptic cleft from the presynaptic axon terminal. Among its anatomical specializations are junctional folds which harbor a high density of cholinergic receptors. Motor End-Plate,End-Plate, Motor,End-Plates, Motor,Endplate, Motor,Endplates, Motor,Motor End Plate,Motor End-Plates,Motor Endplates
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D012038 Regeneration The physiological renewal, repair, or replacement of tissue. Endogenous Regeneration,Regeneration, Endogenous,Regenerations
D002038 Bungarotoxins Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin
D003714 Denervation The resection or removal of the nerve to an organ or part. Laser Neurectomy,Neurectomy,Peripheral Neurectomy,Radiofrequency Neurotomy,Denervations,Laser Neurectomies,Neurectomies,Neurectomies, Laser,Neurectomies, Peripheral,Neurectomy, Laser,Neurectomy, Peripheral,Neurotomies, Radiofrequency,Neurotomy, Radiofrequency,Peripheral Neurectomies,Radiofrequency Neurotomies
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D Bader
July 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D Bader
April 1982, Brain research bulletin,
Copied contents to your clipboard!