Control and virus-transformed baby hamster kidney cells resistant to ethidium bromide. II. Membrane properties. 1981

G Soslau, and T E Conover, and R F Schneider, and P J Zavodny

Aspects of membrane structure and functions were studied in ethidium bromide resistant cells. Submitochondrial particles were solubilized and electrophoresed. The gel patterns, representing mitochondrial membrane proteins, demonstrated qualitative and quantitative alterations in mitochondrial preparations derived from virus-transformed cells and ethidium bromide resistant cells as compared to the control cells. The plasma membrane glycoproteins were labelled by the sodium borohydride method. The glycoproteins were pleased with Triton X-100 and electrophoresed. Fluorograms of the gels demonstrated some marked differences between the ethidium bromide resistant cells and their parental strain. The observed alterations in the membrane glycoproteins did not result in altered glucose transport properties or in the elution patterns of plasma membrane glycopeptides as analyzed by Sephadex G-50 chromatography. Dye uptake and binding studies with intact parental and drug resistant cells and their isolated mitochondria demonstrated no alteration of the membrane permeability or the number of binding sites for ethidium bromide. Similar results were also obtained with a cyanine dye. This latter finding was significant in that it permitted one to exclude dye exclusion as a mechanism for ethidium bromide resistance.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004351 Drug Resistance Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. Resistance, Drug
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium

Related Publications

G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
August 1980, Journal of cellular physiology,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
December 1974, Journal of cell science,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
October 1978, Journal of cell science,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
May 1974, The Journal of biological chemistry,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
December 1984, Journal of biochemistry,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
July 1980, Biochemistry,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
June 1983, Cancer research,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
December 1976, The Journal of general virology,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
December 1974, Virology,
G Soslau, and T E Conover, and R F Schneider, and P J Zavodny
December 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!