Maternal thyroid function is the major determinant of amniotic fluid 3,3',5'-triiodothyronine in the rat. 1981

M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman

3,3',5'-triiodothyronine, (rT(3)), is easily measured in human amniotic fluid (AF) during the second and third trimesters. To determine if AF rT(3) levels are maintained by either maternal or fetal thyroid function, or both, models of fetal hypothyroidism (FH), maternal hypothyroidism (MH), and combined maternal and fetal hypothyroidism (MFH) were developed in pregnant rats. Hormone analyses of maternal and fetal serum and AF were performed at term. Thyroxine (T(4)) and 3,3',5-triiodothyronine (T(3)) were not detectable in the sera and AF of term fetuses in all groups. MFH rats were prepared by administration of methimazole to the dams, and in some experiments, by maternal thyroidectomy and a low iodine diet as well. In the MFH groups from the three experiments serum thyrotropin (TSH) was markedly elevated in the dams and in the fetuses. FH rats were prepared by administering T(4) by various routes to dams treated according to the MFH protocols and serum TSH was elevated in fetal serum. Analysis of FH maternal serum T(4), T(3), and TSH concentrations suggested mild maternal hyperthyroidism or hypothyroidism depending upon the schedule of T(4) administration. The MH groups were prepared by maternal thyroidectomy and in all experiments the fetuses had normal serum TSH concentrations. The degree of maternal hypothyroidism in the MH and MFH groups was equivalent. The mean concentration of AF rT(3) in normal rats in three experiments was 28.4+/-2.5 ng/dl (+/-SEM). In the three experiments, AF rT(3) was undetectable or markedly reduced in the MH and MFH rats and was normal in the FH rats. These results in the amniotic fluid could not be explained by transfer of rT(3) from fetal serum to the AF because fetal serum rT(3) concentrations in these various models did not correlate with AF rT(3) concentration. Furthermore, infusion of large doses of rT(3) in MFH dams resulted in a 35-fold elevation in maternal serum rT(3) concentration, a twofold elevation in fetal serum rT(3) concentration, and only a minimal increase in AF rT(3). These studies demonstrated that, in the rat, the maternal thyroid has the dominant role in maintaining AF rT(3), whereas little effect of fetal thyroid status on AF rT(3) could be demonstrated. Transfer of maternal rT(3) or of fetal rT(3) derived from maternal T(4) to the AF do not appear to be the mechanisms whereby the maternal thyroid maintains AF rT(3).

UI MeSH Term Description Entries
D007037 Hypothyroidism A syndrome that results from abnormally low secretion of THYROID HORMONES from the THYROID GLAND, leading to a decrease in BASAL METABOLIC RATE. In its most severe form, there is accumulation of MUCOPOLYSACCHARIDES in the SKIN and EDEMA, known as MYXEDEMA. It may be primary or secondary due to other pituitary disease, or hypothalamic dysfunction. Central Hypothyroidism,Primary Hypothyroidism,Secondary Hypothyroidism,TSH Deficiency,Thyroid-Stimulating Hormone Deficiency,Central Hypothyroidisms,Deficiency, TSH,Deficiency, Thyroid-Stimulating Hormone,Hormone Deficiency, Thyroid-Stimulating,Hypothyroidism, Central,Hypothyroidism, Primary,Hypothyroidism, Secondary,Hypothyroidisms,Primary Hypothyroidisms,Secondary Hypothyroidisms,TSH Deficiencies,Thyroid Stimulating Hormone Deficiency,Thyroid-Stimulating Hormone Deficiencies
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011248 Pregnancy Complications Conditions or pathological processes associated with pregnancy. They can occur during or after pregnancy, and range from minor discomforts to serious diseases that require medical interventions. They include diseases in pregnant females, and pregnancies in females with diseases. Adverse Birth Outcomes,Complications, Pregnancy,Adverse Birth Outcome,Birth Outcome, Adverse,Complication, Pregnancy,Outcome, Adverse Birth,Pregnancy Complication
D005260 Female Females
D005315 Fetal Diseases Pathophysiological conditions of the FETUS in the UTERUS. Some fetal diseases may be treated with FETAL THERAPIES. Embryopathies,Disease, Fetal,Diseases, Fetal,Embryopathy,Fetal Disease
D000653 Amniotic Fluid A clear, yellowish liquid that envelopes the FETUS inside the sac of AMNION. In the first trimester, it is likely a transudate of maternal or fetal plasma. In the second trimester, amniotic fluid derives primarily from fetal lung and kidney. Cells or substances in this fluid can be removed for prenatal diagnostic tests (AMNIOCENTESIS). Amniotic Fluid Index,Amniotic Fluid Indices,Amniotic Fluids,Fluid Index, Amniotic,Fluid Indices, Amniotic,Fluid, Amniotic,Fluids, Amniotic,Index, Amniotic Fluid,Indices, Amniotic Fluid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4
D014284 Triiodothyronine A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5' position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly T3. Liothyronine,T3 Thyroid Hormone,3,3',5-Triiodothyronine,Cytomel,Liothyronine Sodium,Thyroid Hormone, T3

Related Publications

M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
June 1985, Nihon Sanka Fujinka Gakkai zasshi,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
April 1980, The Journal of clinical endocrinology and metabolism,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
July 1977, European journal of pediatrics,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
August 1993, Endocrine journal,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
January 1979, Journal of endocrinological investigation,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
September 1982, Endocrinology,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
January 1982, Clinica chimica acta; international journal of clinical chemistry,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
October 1983, Medical hypotheses,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
December 1977, The Journal of clinical investigation,
M M El-Zaheri, and A G Vagenakis, and L Hinerfeld, and C H Emerson, and L E Braverman
November 1981, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!