Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). 1981

C C Bell

The central distribution of afferents from individual eight nerve branches (N VIII) and mechanical lateral line end organs in mormyrid fish are described. Afferents were labeled with horseradish peroxidase (HRP) placed on the cut ends of the different N VIII branches and the anterior and posterior lateral line nerves. Descending, tangential, and magnocellular nuclei receive input almost exclusively from the utriculus and canals. Nucleus octavius receives afferents from the lateral line nerves and all N VIII branches, with one part receiving exclusive and bilateral input from the sacculus. Afferents from both lateral line nerves and all N VII branches, except the sacculus, end in eminentia granularis. Afferents from each of the two lateral line nerves and from each of three otolith branches of N VIII end in different regions of the anterior lateral line lobe, with some areas of overlap. Behavioral studies in other families of fish indicate that the utriculus and canals are critical for postural control, whereas the sacculus and possibly the lagena are concerned with hearing. Such findings, together with the results of this study, suggest that mormyrids and perhaps other fish possess separate auditory and vestibular centers within the octavolateral area. The HRP method also shows the cell bodies and axons of octavolateral efferents. N VIII and lateral line efferents arise from a common nucleus, and the central course of their axons parallels that of facial motoneurons. Axons of efferent cells divide to supply two or more branches of N VIII and some axons supply both lateral line and N VIII end organs.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003391 Cranial Nerves Twelve pairs of nerves that carry general afferent, visceral afferent, special afferent, somatic efferent, and autonomic efferent fibers. Cranial Nerve,Nerve, Cranial,Nerves, Cranial
D004525 Efferent Pathways Nerve structures through which impulses are conducted from a nerve center toward a peripheral site. Such impulses are conducted via efferent neurons (NEURONS, EFFERENT), such as MOTOR NEURONS, autonomic neurons, and hypophyseal neurons. Motor Pathways,Efferent Pathway,Pathway, Efferent,Pathways, Efferent
D004856 Postural Balance A POSTURE in which an ideal body mass distribution is achieved. Postural balance provides the body carriage stability and conditions for normal functions in stationary position or in movement, such as sitting, standing, or walking. Postural Control,Posture Balance,Posture Control,Posture Equilibrium,Balance, Postural,Musculoskeletal Equilibrium,Postural Equilibrium,Balance, Posture,Control, Postural,Control, Posture,Equilibrium, Musculoskeletal,Equilibrium, Postural,Equilibrium, Posture,Postural Controls,Posture Balances,Posture Controls,Posture Equilibriums
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000159 Vestibulocochlear Nerve The 8th cranial nerve. The vestibulocochlear nerve has a cochlear part (COCHLEAR NERVE) which is concerned with hearing and a vestibular part (VESTIBULAR NERVE) which mediates the sense of balance and head position. The fibers of the cochlear nerve originate from neurons of the SPIRAL GANGLION and project to the cochlear nuclei (COCHLEAR NUCLEUS). The fibers of the vestibular nerve arise from neurons of Scarpa's ganglion and project to the VESTIBULAR NUCLEI. Cranial Nerve VIII,Eighth Cranial Nerve,Cochleovestibular Nerve,Statoacoustic Nerve,Cochleovestibular Nerves,Cranial Nerve VIIIs,Cranial Nerve, Eighth,Cranial Nerves, Eighth,Eighth Cranial Nerves,Nerve VIIIs, Cranial,Nerve, Cochleovestibular,Nerve, Eighth Cranial,Nerve, Statoacoustic,Nerve, Vestibulocochlear,Nerves, Cochleovestibular,Nerves, Eighth Cranial,Nerves, Statoacoustic,Nerves, Vestibulocochlear,Statoacoustic Nerves,VIIIs, Cranial Nerve,Vestibulocochlear Nerves
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C C Bell
January 2006, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
C C Bell
July 1997, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
C C Bell
September 1978, The Journal of comparative neurology,
C C Bell
November 1981, Science (New York, N.Y.),
Copied contents to your clipboard!