Direct retinal projections to the hypothalamus, piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish peroxidase technique. 1981

G E Pickard, and A J Silverman

The central projections of the retinal ganglion cells of the golden hamster were examined using horseradish peroxidase (HRP) as the anterograde tracer molecule. Following monocular injections of HRP into the vitreous, retinofugal fibers were histochemically demonstrated using the chromagen tetramethylbenzidine. This procedure, being more sensitive than the 3H-amino acid radioautographic technique, provided a clear demonstration of previously controversial retinal projections, clearer definition of established projections, and the discovery of new retinal pathways. An inferior accessory optic system was shown to be unequivocally present in this species and to consist of both crossed and uncrossed components. A direct retinal projection to the suprachiasmatic nucleus (SCN) of the hypothalamus was confirmed in this study. But the distribution of terminals as seen by this procedure was substantially different than previously reported; both rostrocaudal and mediolateral asymmetries in the distribution of label between the ipsilateral and contralateral SCN were observed. Substantial differences in the retinal projection to the SCN in the hamster and the rat were also noted. It is suggested that these differences may reflect the different effects photic input has on the neuro-endocrine-gonadal axis in these two species. Finally, labeled retinal axons were followed leaving the optic tract and coursing anteriorly through the plexiform layer of the piriform cortex; other labeled fibers were seen to enter the septal region. The physiological significance of these previously undescribed retinal projections is not known.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009897 Optic Chiasm The X-shaped structure formed by the meeting of the two optic nerves. At the optic chiasm the fibers from the medial part of each retina cross to project to the other side of the brain while the lateral retinal fibers continue on the same side. As a result each half of the brain receives information about the contralateral visual field from both eyes. Chiasma Opticum,Optic Chiasma,Optic Decussation,Chiasm, Optic,Chiasma Opticums,Chiasma, Optic,Chiasmas, Optic,Chiasms, Optic,Decussation, Optic,Decussations, Optic,Optic Chiasmas,Optic Chiasms,Optic Decussations,Opticum, Chiasma,Opticums, Chiasma
D009900 Optic Nerve The 2nd cranial nerve which conveys visual information from the RETINA to the brain. The nerve carries the axons of the RETINAL GANGLION CELLS which sort at the OPTIC CHIASM and continue via the OPTIC TRACTS to the brain. The largest projection is to the lateral geniculate nuclei; other targets include the SUPERIOR COLLICULI and the SUPRACHIASMATIC NUCLEI. Though known as the second cranial nerve, it is considered part of the CENTRAL NERVOUS SYSTEM. Cranial Nerve II,Second Cranial Nerve,Nervus Opticus,Cranial Nerve, Second,Cranial Nerves, Second,Nerve, Optic,Nerve, Second Cranial,Nerves, Optic,Nerves, Second Cranial,Optic Nerves,Second Cranial Nerves
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric
D005260 Female Females
D005829 Geniculate Bodies Part of the DIENCEPHALON inferior to the caudal end of the dorsal THALAMUS. Includes the lateral geniculate body which relays visual impulses from the OPTIC TRACT to the calcarine cortex, and the medial geniculate body which relays auditory impulses from the lateral lemniscus to the AUDITORY CORTEX. Lateral Geniculate Body,Medial Geniculate Body,Metathalamus,Corpus Geniculatum Mediale,Geniculate Nucleus,Lateral Geniculate Nucleus,Medial Geniculate Complex,Medial Geniculate Nucleus,Nucleus Geniculatus Lateralis Dorsalis,Nucleus Geniculatus Lateralis Pars Dorsalis,Bodies, Geniculate,Complex, Medial Geniculate,Complices, Medial Geniculate,Corpus Geniculatum Mediales,Geniculate Bodies, Lateral,Geniculate Bodies, Medial,Geniculate Body,Geniculate Body, Lateral,Geniculate Body, Medial,Geniculate Complex, Medial,Geniculate Complices, Medial,Geniculate Nucleus, Lateral,Geniculate Nucleus, Medial,Geniculatum Mediale, Corpus,Geniculatum Mediales, Corpus,Lateral Geniculate Bodies,Medial Geniculate Bodies,Medial Geniculate Complices,Mediale, Corpus Geniculatum,Mediales, Corpus Geniculatum,Nucleus, Geniculate,Nucleus, Lateral Geniculate,Nucleus, Medial Geniculate

Related Publications

G E Pickard, and A J Silverman
January 1983, Experimental brain research,
Copied contents to your clipboard!