Ionic currents in slow twitch skeletal muscle in the rat. 1980

A Duval, and C Léoty

1. The ionic currents in slow fibres isolated from rat soleus muscle have been studied under voltage-clamp conditions with a double sucrose-gap method and the results are compared to those obtained from fast fibres isolated from the iliacus muscle. 2. The mean value of the resting potential in slow fibres is -70 mV. a value 8 mV more positive that the mean resting potential of fast fibres (-78 mV). 3. In slow muscle, a fast inward current which is blocked by tetrodotoxin and which depends on external sodium concentration is presumed to be carried by sodium ions. The characteristics of this current, which are time- and voltage-dependent, are similar to those of the iliacus fibres. From a holding potential at -86 mV, this inward current is maximal (2.6 mA/cm2 +/- 0.3) at +49.1 mV +/- 1.5 (mean +/- S.E. of mean), reverses at +127.3 mV +/- 2.2 (mean +/- S.E. of mean), and its half inactivation occurs at +23.2 mV +/- 0.8 (mean +/- S.E. of mean). 4. The delayed outward current in slow fibres is unchanged by exposure to chloride free solution and has a time course very different from that found in fast fibres. This current reaches an initial peak in 5-10 msec and a second peak or steady level after 40-150 msec. The decay of the outward current is also very different, being ten times slower than that in fast fibres (1500-3000 msec). 5. Analysis of the tail currents reveals the existence of two components of delayed current in slow fibres. The faster component reverses at a potential of 11.3 mV +/- 0.9 (mean +/- S.E. of mean) positive to the holding potential (equivalent to a membrane potential of about -75 mV), in contrast to a reversal potential of 35.4 mV +/- 2.5 (mean +/- S.E. of mean) positive to the holding potential for the slower component (equivalent to a membrane potential of about -51 mV. 6. In L-glutamate solution the characteristics of the inward-going rectification are the same in the two types of muscle.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

A Duval, and C Léoty
October 1984, General physiology and biophysics,
A Duval, and C Léoty
October 1983, The Journal of general physiology,
A Duval, and C Léoty
January 1984, European journal of applied physiology and occupational physiology,
A Duval, and C Léoty
April 1983, The Journal of general physiology,
A Duval, and C Léoty
February 2006, Journal of neurobiology,
A Duval, and C Léoty
September 2009, American journal of physiology. Regulatory, integrative and comparative physiology,
A Duval, and C Léoty
January 2010, Journal of applied physiology (Bethesda, Md. : 1985),
A Duval, and C Léoty
November 1985, The Journal of physiology,
Copied contents to your clipboard!