Thyroid hormones and lipolysis in physically trained rats. 1981

A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp

In rats a single bout of exercise resulted in increased triiodothyronine (T3), thyroxine (T4), and triiodothyronine/reverse triiodothyronine (T3/rT3) ratio 20 hr after exercise. The effect of norepinephrine on lipolysis in vitro was potentiated. In trained rats no changes were found in T4, T3, or rT3 concentrations. The T3/rT3 ratio as well as basal and stimulated TSH concentrations decreased in comparison with sedentary, freely eating rats. Moderate food restriction to produce a body weight similar to that of trained animals caused no changes in T4, T3, or rT3 concentrations but caused a decrease in T3/rT3 and in TSH levels. Training and moderate food restriction groups were not different. T3 in vitro caused a potentiation of catecholamine induced lipolysis in trained and food-restricted animals. With aging the serum concentration of T3 decreased and that of rT3 increased. Acute and chronic exercise both exert an effect on peripheral hormonal responses of lipolysis, while they have different and opposite effects on thyroid hormone concentrations. Physical training seems to have effects in this regard similar to those of moderate energy intake restriction. The results suggest that changes in peripheral effects of thyroid hormones during training should attract more attention.

UI MeSH Term Description Entries
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010805 Physical Conditioning, Animal Diet modification and physical exercise to improve the ability of animals to perform physical activities. Animal Physical Conditioning,Animal Physical Conditionings,Conditioning, Animal Physical,Conditionings, Animal Physical,Physical Conditionings, Animal
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4

Related Publications

A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
January 1978, Endokrynologia Polska,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
May 1966, The American journal of physiology,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
March 1978, Cardiovascular research,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
December 1994, Journal of applied physiology (Bethesda, Md. : 1985),
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
June 1971, Journal of biochemistry,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
May 2013, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
January 1982, The Japanese journal of physiology,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
June 1993, Journal of applied physiology (Bethesda, Md. : 1985),
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
December 1985, Diabetes,
A Wirth, and G Holm, and G Lindstedt, and P A Lundberg, and P Björntorp
June 1984, Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete,
Copied contents to your clipboard!