Selective removal of histone H1 from nucleosomes at low ionic strength. 1980

S P Modak, and J J Lawrence, and C Gorka

The method for removal of histone H 1 from chromatin by treatment with ion-exchange resin AG 50 WX 2 in the presence of 100 mM NaCl and 50 mM phosphate buffer (Thoma and Koller, 1977, Cell, 12, 101-107) results in production not only of H1-depleted chromatin but also free DNA. We have not modified this procedure so that the nucleosome is treated with the cation exchange resin in two steps, first in 50 mM sodium phosphate buffer and then in 50 mM sodium phosphate and 50 mM NaCl whereby histone H 1 is selectively removed without a release of free DNA at low resin concentrations.

UI MeSH Term Description Entries
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002411 Cation Exchange Resins High molecular weight insoluble polymers which contain functional anionic groups that are capable of undergoing exchange reactions with cations. Cation Exchange Resin,Cation Exchangers (Resins),Exchange Resin, Cation,Exchange Resins, Cation,Resin, Cation Exchange,Resins, Cation Exchange
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004587 Electrophoresis, Agar Gel Electrophoresis in which agar or agarose gel is used as the diffusion medium. Electrophoresis, Agarose Gel,Agar Gel Electrophoresis,Agarose Gel Electrophoresis,Gel Electrophoresis, Agar,Gel Electrophoresis, Agarose
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7

Related Publications

S P Modak, and J J Lawrence, and C Gorka
July 1981, Analytical biochemistry,
S P Modak, and J J Lawrence, and C Gorka
March 1979, Biochemistry,
S P Modak, and J J Lawrence, and C Gorka
November 1980, Nucleic acids research,
S P Modak, and J J Lawrence, and C Gorka
September 1981, Nucleic acids research,
S P Modak, and J J Lawrence, and C Gorka
November 1979, The Journal of biological chemistry,
S P Modak, and J J Lawrence, and C Gorka
January 1980, Doklady Akademii nauk SSSR,
S P Modak, and J J Lawrence, and C Gorka
July 1976, Biochemistry,
S P Modak, and J J Lawrence, and C Gorka
January 1972, Biopolymers,
S P Modak, and J J Lawrence, and C Gorka
April 1984, The Journal of biological chemistry,
Copied contents to your clipboard!