A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. 1981

T M Allen

Previous observations on serum-induced leakage of liposome contents from egg phosphatidylcholine liposomes (Allen, T.M. and Cleland, L.G. (1980) Biochim. Biophys, Acta 597, 418--426) have been extended in order to examine the role of the phase transition and phospholipid backbone in leakage. The high-density lipoprotein (HDL) fraction has been purified from human serum and the rate of transfer of radioactively labelled phospholipids from sonicated liposomes to high-density lipoproteins has been examined. Results obtained from the calcein dequenching method for serum-induced leakage of liposome contents showed that as the proportion of solid phospholipid (distearoyl phosphatidylcholine, Tc = 56 degrees C) increased, relative to the proportion of egg phosphatidylcholine, the half-time for retention of liposome contents at 37 degrees C in the presence of serum also increased. Including increasing amounts of bovine brain sphingomyelin (Tc = 30 degrees C) in egg phosphatidylcholine liposomes also substantially decreased leakage from liposomes in the presence of serum at 37 degrees C. 14C-labelled egg phosphatidylcholine was found to transfer readily from liposomes to purified HDL, as did 14C-labelled dioleoyl phosphatidylcholine. Including cholesterol in egg phosphatidylcholine liposomes decreased the rate of transfer of phospholipid to HDL. 14C-labelled distearoyl phosphatidylcholine did not exchange readily with HDL. These results are consistent with the interpretation that tightening bilayer packing prevents the apolipoprotein-mediated transfer of phospholipid to HDL and slows the leakage of liposome contents associated with this transfer. [14C]Sphingomyelin also did not exchange readily with HDL. This does not appear to be a phase transition effect as the majority of sphingomyelin is above its phase transition at 37 degrees C. The failure of sphingomyelin to exchange readily with HDL is interpreted as being due to intermolecular hydrogen bonding between the sphingosine backbones of the sphingomyelin molecule.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D001769 Blood The body fluid that circulates in the vascular system (BLOOD VESSELS). Whole blood includes PLASMA and BLOOD CELLS.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013109 Sphingomyelins A class of sphingolipids found largely in the brain and other nervous tissue. They contain phosphocholine or phosphoethanolamine as their polar head group so therefore are the only sphingolipids classified as PHOSPHOLIPIDS. Sphingomyelin

Related Publications

T M Allen
April 1982, Biochemical and biophysical research communications,
T M Allen
February 1987, Biochimica et biophysica acta,
T M Allen
March 1991, Biochimica et biophysica acta,
T M Allen
September 2002, Biochemical and biophysical research communications,
Copied contents to your clipboard!