Lacrimal gland flow and potentials during dinitrophenol, ouabain, and ethacrynic acid perfusion. 1981

S Y Botelho, and N Fuenmayor

Acetylcholine (ACh)-evoked flow from the main excretory duct as well as ACh-induced secretory and resting membrane potentials from cells of the rabbit lacrimal gland were recorded during perfusion with inhibitors. During perfusion with 2,4-dinitrophenol (DNP), ouabain, or ethacrynic acid, ACh-induced flow was 5%, 20%, and 8% of control, respectively; ACh-induced hyperpolarizing secretory potential was 64%, 50%, and 63% of control, respectively; and the resting membrane potential was 79%, 64%, and 73% of control, respectively. Only during perfusion with ethacrynic acid was there a significant increase in the number of cells that did not respond to ACh with a change in potential. We have concluded that (1) ACh-induced secretion is highly dependent on oxidative metabolism and Na-K ATPase; (2) ACh-induced hyperpolarization is dependent on changes in ionic permeabilities, Na-K ATPase, and to lesser extent oxidative metabolism; and (3) the resting membrane potential is much less dependent on oxidative metabolism and Na-K ATPase activity.

UI MeSH Term Description Entries
D007765 Lacrimal Apparatus The tear-forming and tear-conducting system which includes the lacrimal glands, eyelid margins, conjunctival sac, and the tear drainage system. Lacrimal Gland,Nasolacrimal Apparatus,Conjunctival Sacs,Lacrimal Ducts,Lacrimal Punctum,Lateral Canthus,Medial Canthus,Apparatus, Lacrimal,Apparatus, Nasolacrimal,Canthus, Lateral,Canthus, Medial,Conjunctival Sac,Duct, Lacrimal,Gland, Lacrimal,Lacrimal Duct,Lacrimal Glands,Lacrimal Punctums,Punctum, Lacrimal,Sac, Conjunctival
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004976 Ethacrynic Acid A compound that inhibits symport of sodium, potassium, and chloride primarily in the ascending limb of Henle, but also in the proximal and distal tubules. This pharmacological action results in excretion of these ions, increased urinary output, and reduction in extracellular fluid. This compound has been classified as a loop or high ceiling diuretic. Edecrin,Etacrynic Acid,Ethacrinic Acid,Ethacrynate Sodium,Ethacrynic Acid, Sodium Salt,Hydromedin,Acid, Etacrynic,Acid, Ethacrinic,Acid, Ethacrynic,Sodium, Ethacrynate
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Y Botelho, and N Fuenmayor
January 1974, Pflugers Archiv : European journal of physiology,
S Y Botelho, and N Fuenmayor
April 1982, Journal of Osaka Dental University,
S Y Botelho, and N Fuenmayor
January 1983, Josai Shika Daigaku kiyo. The Bulletin of the Josai Dental University,
S Y Botelho, and N Fuenmayor
May 1974, The American journal of physiology,
S Y Botelho, and N Fuenmayor
February 1976, The American journal of physiology,
S Y Botelho, and N Fuenmayor
December 1972, Archives internationales de pharmacodynamie et de therapie,
S Y Botelho, and N Fuenmayor
March 1982, The American journal of physiology,
S Y Botelho, and N Fuenmayor
February 1983, The American journal of physiology,
S Y Botelho, and N Fuenmayor
May 1971, Research communications in chemical pathology and pharmacology,
Copied contents to your clipboard!