The migration of presumptive primordial germ cells through the endodermal cell mass in Xenopus laevis: a light and electron microscopic study. 1980

M Kamimura, and M Kotani, and K Yamagata

Presumptive primordial germ cells (pPGCs) were examined during migration from their deep endodermal position to the endodermal crest in Xenopus laevis, using light and electron microscopy with Epon sections, and several morphological characteristics of pPGCs, associated with their migration, were revealed. pPGCs displayed polymorphism, with smooth contours. The intercellular space around the PGCs was large and variable in width and cytoplasmic processes from pPGCs were occasionally observed in it. It was shown quantitatively that pPGCs at the migratory stage had a tendency to move with the leading end, towards which the nucleus was localized, dragging the germinal plasm behind. These polarized pPGCs were frequently associated with large intercellular spaces, both at their leading and trailing ends. Cytoplasmic processes of polarizing pPGCs found in the large intercellular space at the leading end were conspicuous. Ultrastructurally, the nuclei of pPGCs were euchromatic, and the nucleolus was prominent. The germinal plasm at the light microscope level corresponded to the cytoplasmic area near the nucleus where a large number of mitochondria with well-developed cristae and most of the other organelles were aggregated. Centrioles and centriole-associated microtubules observed in the aggregate were thought to be important structures responsible for the cell polarization mentioned above. It was demonstrated quantitatively that the size of mitochondria in pPGCs was larger on average than that of mitochondria in neighbouring somatic endodermal cells. Numerous irregularly shaped small yolk platelets characterized pPGCs. These ultrastructural features suggested that pPGCs were in an activated metabolic state. It was concluded that the migration of pPGCs was attributable to active movement with high cell metabolism, causing the formation of cell processes and intracellular polarization.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005260 Female Females
D005854 Germ Cells The reproductive cells in multicellular organisms at various stages during GAMETOGENESIS. Gamete,Gametes,Germ-Line Cells,Germ Line,Cell, Germ,Cell, Germ-Line,Cells, Germ,Cells, Germ-Line,Germ Cell,Germ Line Cells,Germ Lines,Germ-Line Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

M Kamimura, and M Kotani, and K Yamagata
May 1975, The Journal of experimental zoology,
M Kamimura, and M Kotani, and K Yamagata
August 1978, Journal of embryology and experimental morphology,
M Kamimura, and M Kotani, and K Yamagata
January 1982, Cell and tissue research,
M Kamimura, and M Kotani, and K Yamagata
March 1979, Developmental biology,
M Kamimura, and M Kotani, and K Yamagata
February 1977, Journal of embryology and experimental morphology,
M Kamimura, and M Kotani, and K Yamagata
February 1975, Kaibogaku zasshi. Journal of anatomy,
M Kamimura, and M Kotani, and K Yamagata
March 2016, Integrative biology : quantitative biosciences from nano to macro,
M Kamimura, and M Kotani, and K Yamagata
August 1973, Journal of embryology and experimental morphology,
Copied contents to your clipboard!