Ectoderm and mesoderm interactions in the limb bud of the chick embryo studied by transfilter cultures: cartilage differentiation and ultrastructural observations. 1980

M Gumpel-Pinot

The wing mesoderm of the chick embryo cultured in vitro without ectoderm is able to differentiate into cartilage from stage 17 (Hamburger & Hamilton, 1951). But before this stage the presence of ectoderm is necessary. In transfilter cultures of wing-bud ectoderm and mesoderm, the mesodermal response as measured by chondrogenesis was directly related to the pore size (0.2--1 micrometer) of the filter. Filters of 0.2 micrometer pore size and 10 micrometer thickness gave no increase in chondrogenesis over that of mesoderm cultures alone. The lower face of filters on the upper face of which mesoderm or ectoderm has been cultured was observed by scanning electron microscopy. With ectoderm, no cell processes crossed the filter. In contrast, with mesoderm, cell processes crossed the filter and this was also related to pore size. A good correlation was observed between the mass and density of processes crossing the filter and the mesodermal response. It is concluded that induction of cartilage in limb mesoderm cannot be classified as a 'long-range transmission' system. It requires ectoderm and mesoderm to be separated by a very narrow gap and this condition can be brought about in vitro by extension of mesodermal processes through the filter close to the ectoderm. The results are discussed in relation to a possible role of the basement membrane and associated extracellular matrix in limb cartilage induction.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D002356 Cartilage A non-vascular form of connective tissue composed of CHONDROCYTES embedded in a matrix that includes CHONDROITIN SULFATE and various types of FIBRILLAR COLLAGEN. There are three major types: HYALINE CARTILAGE; FIBROCARTILAGE; and ELASTIC CARTILAGE. Cartilages
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004475 Ectoderm The outer of the three germ layers of an embryo. Apical Ectodermal Ridge,Apical Ectodermal Ridges,Ectodermal Ridge, Apical,Ectoderms
D005374 Filtration A process of separating particulate matter from a fluid, such as air or a liquid, by passing the fluid carrier through a medium that will not pass the particulates. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Filtrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014921 Wings, Animal Movable feathered or membranous paired appendages by means of which certain animals such as birds, bats, or insects are able to fly. Animal Wing,Animal Wings,Wing, Animal

Related Publications

M Gumpel-Pinot
January 1966, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
M Gumpel-Pinot
January 1973, Acta embryologiae experimentalis,
M Gumpel-Pinot
January 1968, Archives d'anatomie microscopique et de morphologie experimentale,
M Gumpel-Pinot
December 1960, Journal of embryology and experimental morphology,
M Gumpel-Pinot
September 2022, Developmental dynamics : an official publication of the American Association of Anatomists,
Copied contents to your clipboard!