Cell membrane regions in preimplantation mouse embryos. 1980

L Izquierdo, and T López, and P Marticorena

Cell membrane regions characterized by alkaline phosphatase activity are described in cleaving mouse embryos and early blastocysts. Enzyme activity is demonstrated by light and electron microscopy, from the late 4-cell stage onwards, on the cell surfaces between blastomeres but not on the outer surface of the embryo. Experiments with dissociated morulae show that this is probably not an artifact due to the retention of the enzyme reaction product between the blastomeres. With the electron microscope the activity is also demonstrated in crystalloid bodies within the cytoplasm. The localization and growth during cleavage of cell membrane regions with enzyme activity is interpreted as the result of new cell membrane formation and/or as a relation of the crystalloid bodies with the cell membrane through the cortical system of microtubules and filaments.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009028 Morula An early embryo that is a compact mass of about 16 BLASTOMERES. It resembles a cluster of mulberries with two types of cells, outer cells and inner cells. Morula is the stage before BLASTULA in non-mammalian animals or a BLASTOCYST in mammals. Morulas
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D001757 Blastomeres Undifferentiated cells resulting from cleavage of a fertilized egg (ZYGOTE). Inside the intact ZONA PELLUCIDA, each cleavage yields two blastomeres of about half size of the parent cell. Up to the 8-cell stage, all of the blastomeres are totipotent. The 16-cell MORULA contains outer cells and inner cells. Blastocytes,Blastocyte,Blastomere
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000469 Alkaline Phosphatase An enzyme that catalyzes the conversion of an orthophosphoric monoester and water to an alcohol and orthophosphate. EC 3.1.3.1.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

L Izquierdo, and T López, and P Marticorena
December 1987, Journal of in vitro fertilization and embryo transfer : IVF,
L Izquierdo, and T López, and P Marticorena
January 1982, Developmental biology,
L Izquierdo, and T López, and P Marticorena
January 1977, Developmental biology,
L Izquierdo, and T López, and P Marticorena
January 2017, Methods in molecular biology (Clifton, N.J.),
L Izquierdo, and T López, and P Marticorena
June 1969, Experimental cell research,
L Izquierdo, and T López, and P Marticorena
January 2000, Methods in molecular biology (Clifton, N.J.),
L Izquierdo, and T López, and P Marticorena
December 1987, The Journal of experimental zoology,
L Izquierdo, and T López, and P Marticorena
May 1975, Experimental cell research,
L Izquierdo, and T López, and P Marticorena
November 2017, Seminars in cell & developmental biology,
L Izquierdo, and T López, and P Marticorena
January 1986, Progress in clinical and biological research,
Copied contents to your clipboard!