Interneurons between giant axons and motoneurons in crayfish escape circuitry. 1981

A P Kramer, and F B Krasne, and J J Wine

1. Crayfish giant fibers are generally believed to generate tailflip movements by means of direct connections to two classes of phasic flexor muscle motoneurons, the motor giants (MoGs) and the nongiant fast flexor motoneurons (FFs). It is shown here that the giants also stimulate a network of interneurons that make connections with the FFs. 2. This network includes an intraganglionic neuron, the segmental giant (SG), in each abdominal hemisegment and a number of intersegmental neurons, two of which (I2 and I3) were studied in detail. 3. The SGs are driven reliably by the giant fibers and they in turn drive the FFs of their hemisegment about as effectively as do the giant fibers themselves; it is possible that the giant fibers excite the FFs mainly by way of the SGs. The SGs also have an efferent first root axon whose peripheral targets we have been unable to determine. 4. I2 and I3 originate in the second and third abdominal ganglia, respectively, and descend to the last ganglion. In their ganglia of origin they are reliably driven by the giant fibers and by the SGs. In addition, I2 weakly excites I3 and both receive weak, apparently direct, excitatory input from FFs as well as less direct excitatory and inhibitory input from unidentified afferent sources. Both weakly excite most FFs in ganglia behind the one in which they originate. This excitation adds to that produced directly by giant fibers and SGs and, we believe, is sometimes decisive in causing FF firing. Their firing also causes inhibition involved in suppressing effects of reafference, as do the giant fibers themselves. 5. I3 strongly excites the motoneurons of certain tail fan muscles (the ventral and posterior telson flexors). However, the contraction of these muscles would be maladaptive during some giant fiber-mediated tailflips. Accordingly, when the giant fibers, which always recruit I3, fire, they cause an inhibition of the motoneurons that nullifies the excitatory input from I3. At a formal level this means that the giants, viewed as command neurons, not only drive but also alter or modulate the subordinate motor pattern-generating network that they control. 6. Tailflips that are less stereotyped than those mediated by giant fibers are known to occur without participation of the giants. It is suggested that the presence of complex circuitry mediating between giant fibers and FFs may be related to the use of portions of this circuitry as well as the FFs themselves in production of nongiant tailflips.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008124 Locomotion Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004924 Escape Reaction Innate response elicited by sensory stimuli associated with a threatening situation, or actual confrontation with an enemy. Flight Reaction,Escape Reactions,Flight Reactions,Reaction, Escape,Reaction, Flight,Reactions, Escape,Reactions, Flight
D005260 Female Females
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

A P Kramer, and F B Krasne, and J J Wine
January 1985, Journal of neurophysiology,
A P Kramer, and F B Krasne, and J J Wine
January 1988, Brain research,
A P Kramer, and F B Krasne, and J J Wine
August 1987, Journal of neurocytology,
A P Kramer, and F B Krasne, and J J Wine
November 1991, Biophysical journal,
A P Kramer, and F B Krasne, and J J Wine
October 2019, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology,
A P Kramer, and F B Krasne, and J J Wine
August 1983, The Journal of general physiology,
A P Kramer, and F B Krasne, and J J Wine
November 1965, Nature,
A P Kramer, and F B Krasne, and J J Wine
December 1990, Brain research,
A P Kramer, and F B Krasne, and J J Wine
November 1960, Journal of neurophysiology,
Copied contents to your clipboard!