Synergistic regulation of phosphorylase a by glucose and caffeine. 1978

P J Kasvinsky, and S Shechosky, and R J Fletterick

Kinetic studies of both liver and muscle phosphorylase a demonstrate that caffeine and glucose inhibit the binding of glucose 1-phosphate to the enzyme in a synergistic competitive and nonexclusive manner. Inhibition studies for numerous other caffeine analogs show that the muscle enzyme has a relaxed specificity for this negative effector. The liver enzyme is more discriminating by preferential binding of methylated oxypurines. Physiological concentrations of AMP and ATP, which affect the enzymic activity at a separate site, prevent glucose from effectively inhibiting the enzyme. The addition of the second synergistic ligand improves the binding of glucose. These data suggest that glucose homeostasis as regulated by phosphorylase may be dependent on a second ligand and that the role of glucose in this physiological process may have been overestimated. A structural rationalization of this synergistic response is discussed with reference to the crystal structure of the muscle enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D010762 Phosphorylase a The active form of GLYCOGEN PHOSPHORYLASE that is derived from the phosphorylation of PHOSPHORYLASE B. Phosphorylase a is deactivated via hydrolysis of phosphoserine by PHOSPHORYLASE PHOSPHATASE to form PHOSPHORYLASE B.
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose

Related Publications

P J Kasvinsky, and S Shechosky, and R J Fletterick
February 1985, Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire,
P J Kasvinsky, and S Shechosky, and R J Fletterick
June 1981, Canadian journal of biochemistry,
P J Kasvinsky, and S Shechosky, and R J Fletterick
January 1979, The International journal of biochemistry,
P J Kasvinsky, and S Shechosky, and R J Fletterick
December 2000, Archives of biochemistry and biophysics,
P J Kasvinsky, and S Shechosky, and R J Fletterick
January 1988, The International journal of biochemistry,
P J Kasvinsky, and S Shechosky, and R J Fletterick
February 1980, Biochimica et biophysica acta,
P J Kasvinsky, and S Shechosky, and R J Fletterick
April 1991, Biochemistry and cell biology = Biochimie et biologie cellulaire,
P J Kasvinsky, and S Shechosky, and R J Fletterick
March 1997, The Journal of pharmacology and experimental therapeutics,
P J Kasvinsky, and S Shechosky, and R J Fletterick
July 1987, The Journal of clinical investigation,
P J Kasvinsky, and S Shechosky, and R J Fletterick
June 1983, Journal of cellular physiology,
Copied contents to your clipboard!