Localization of kainic acid-sensitive cells in mammalian retina. 1981

C K Hampton, and C Garcia, and D A Redburn

Short-term (15 minutes) in vitro exposure to kainic acid (KA), a rigid structural analog of L-glutamic acid (Glu), caused two morphologically distinct neuronal lesions in retinas of several species. In rabbit retina, one type of lesion was characterized by rapid swelling after exposure to low concentrations of KA (10(-4)M). This lesion was observed in elements of both plexiform layers and, more specifically, in cell bodies and neurites of horizontal cells that contact cones. A few cell bodies from the amacrine cell layer showed some limited swelling. The swelling was completely blocked when sodium was removed from the incubation medium. The second type of lesion was generally seen after longer exposures of after exposure to higher concentrations of KA and was evidenced by degeneration of neurons in the amacrine and ganglion cell layers. One exception was noted in that a few cells from the ganglion cell layer degenerated even under low exposure conditions. The second type of lesion was not blocked by removal of sodium ions. Photoreceptor cells appeared resistant to all effects of KA. The results suggest that a correlation may exist between certain KA-induced lesions of the retina and putative glutamoreceptive neurons. At the same time, the two types of retinal lesions produced by KA are morphologically and chemically differentiable and may be useful in elucidating the differences between specific, Glu-related toxicity and nonspecific toxicity of KA.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C K Hampton, and C Garcia, and D A Redburn
April 1979, Neuropharmacology,
C K Hampton, and C Garcia, and D A Redburn
May 1982, Brain research,
C K Hampton, and C Garcia, and D A Redburn
April 1980, Neuroscience letters,
C K Hampton, and C Garcia, and D A Redburn
March 2006, The European journal of neuroscience,
C K Hampton, and C Garcia, and D A Redburn
June 1999, Molecular neurobiology,
C K Hampton, and C Garcia, and D A Redburn
May 1995, Journal of neurocytology,
C K Hampton, and C Garcia, and D A Redburn
December 1985, Brain research,
C K Hampton, and C Garcia, and D A Redburn
January 1981, Nature,
C K Hampton, and C Garcia, and D A Redburn
February 1989, Current eye research,
C K Hampton, and C Garcia, and D A Redburn
January 1984, Japanese journal of ophthalmology,
Copied contents to your clipboard!