A thermal transition of passive calcium efflux in fragmented sarcoplasmic reticulum. 1980

M S Millman

The temperature dependence of passive Ca2+ efflux from skeletal muscle fragmented sarcoplasmic reticulum (FSR) was studied by dilution of a suspension of the vesicles into which 1 mM (CaCl2 + 45Ca) had been passively incorporated by overnight incubation at 3 degrees. It was found that in the presence of 5 mM Mg2+, Ca2+ efflux could be resolved into two simultaneous first-order processes between 5 degrees and 35 degrees, but only a single first-order process appeared between 37 degrees and 55 degrees. Two independent functional transitions were found at 30 degrees, indicating an abrupt membrane molecular reorganization at that temperature: (1) The two components of Ca2+ efflux at 5 degrees--35 degrees contributed equally to the total observed initial efflux at temperatures up to 30 degrees. Between 30 degrees and 35 degrees, the relative contribution of the fast component progressively diminished until, by 37 degrees, only the slow component remained. (2) The slow component, which persisted throughout the entire temperature range 5 degrees--55 degrees, exhibited a break in its Arrhenius plot at 30 degrees--32 degrees. Elevation of internal Ca2+ concentration to 10 mM failed either to produce saturation kinetics of efflux or appreciably change its first-order rate constant. Omitting Mg2+ in the low temperature range accelerated Ca2+ efflux about 20-fold and eliminated the fast component, whereas including Ca2+ in the external medium in the high temperature range retarded Ca2+ efflux by about the same factor and generated a fast component. Omitting Mg2+ in the high-temperature range, however, had little effect on Ca2+ efflux. The failure of external divalent cation to stimulate Ca2+ efflux thus precludes an obligatory carrier-mediated exchange mechanism. Furthermore, participation of the catalytic turnover function of the Ca2+-ATPase molecule in Ca2+ efflux was unlikely because (1) the 30 degrees transition temperature for efflux did not coincide with those previously determined for active Ca2+ uptake, ATPase activity, and reversal of the Ca2+ pump, and (2) above the transition temperature, the activation enthalpy and activation entropy increased for efflux but decreased for both active Ca2+ uptake and ATPase activity. Ca2+ efflux therefore probably involved simple diffusion through a membrane pore (Ca2+ "leak"). By comparison to the results of others using artificial and biological membranes, the effect of external divalent cation to produce a fast component of Ca2+ efflux from FSR is tentatively attributed to the formation of aggregates of SR vesicles.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic

Related Publications

M S Millman
October 1979, Journal of biochemistry,
M S Millman
October 1979, Biokhimiia (Moscow, Russia),
M S Millman
November 1970, The Journal of biological chemistry,
M S Millman
January 1980, Advances in myocardiology,
M S Millman
October 1978, The Journal of biological chemistry,
M S Millman
December 1972, The Journal of general physiology,
M S Millman
January 1971, Histochemie. Histochemistry. Histochimie,
Copied contents to your clipboard!